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1.1 Support

- Kappa language tutorials and downloads: http://kappalanguage.org

- Bug reports should be posted on github: https://github.com/Kappa-Dev/KaSim/
issues

- Questions and answers on the Kappa-user mailing list: http://groups.google.com/
group/kappa-users

- Want to contribute to the project? jean.krivine@irif.fr
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1.2 Preamble

This manual describes the Kappa language and details the usage of its tool suite.

Kappa is one member of the growing family of rule-based languages. Rule-based modelling
has attracted recent attention in developing biological models that are concise, compre-
hensible, easily extensible, and allows one to deal with the combinatorial complexity of
multi-state and multi-component biological molecules.

From the description of a system by the de�nition of a set of entities and the enumeration
of their local rule of interraction, Kappa tools provide a framework to study statically
and dynamically the system without ever enumerating all its reachable states (unless very
explicitely asked to by users).

In Kappa, a mixture of entities is represented as a site graphs and temporal local transfor-
mations as rewrites.

First contact with Kappa as well as interactive model developement could occurs in the
Kappapp available online and as downloadable software on main platforms. Intensive sci-
enti�c usage should occurs by scripting around the command line tools or by using the
Python client.

After a small teaser, this manual provides an exhaustive list of what can be done and how
with the tools. It is not intended as a tutorial on rule-based modelling.

To get an idea of how Kappa is used in a modelling context, the reader can consult the
following note Agile modelling of cellular signalling (SOS'08). A longer article, expound-
ing on causal analysis is also available: Rule-based modelling of cellular signalling (CON-
CUR'07). See also this tutorial: Modelling epigenetic information maintenance: a Kappa
tutorial.

1.3 Show me a running example

See it really running in the online user interface by clicking on the try button on https:

//www.kappalanguage.org/.

A minimal Kappamodel looks like:

1 //* Signatures*/

2 %agent: A(x, c) // Declaration of agent A

3 %agent: B(x) // Declaration of agent B

4 %agent: C(x1{u p}, x2{u p}) // Declaration of agent C with 2

modifiable sites
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5 /* Variables */

6 %var: 'on_rate ' 1.0E-4 // per molecule per second

7 %var: 'off_rate ' 0.1 // per second

8 %var: 'mod_rate ' 1 // per second

9 /* Rules */

10 'a.b' A(x[.]),B(x[.]) <-> A(x[1]),B(x[1]) @ 'on_rate ', '

off_rate ' //A and B bind and dissociate

11 'ab.c' A(x[_], c[.]),C(x1{u}[.]) -> A(x[_], c[2]),C(x1{u}[2]) @

'on_rate ' //AB binds unphosphorilated C

12 'mod x1' C(x1{u}[1]),A(c[1]) -> C(x1{p}[.]),A(c[.]) @ 'mod_rate

' //ABC modifies x1

13 'a.c' A(x[.],c[.]), C(x1{p}[.], x2{u}[.]) ->

14 A(x[.],c[1]), C(x1{p][.], x2{u}[1]) @ 'on_rate ' //A

binds x1_phos C on x2

15 'mod x2' A(x[.], c[1]),C(x1{p}[.], x2{u}[1]) ->

16 A(x[.], c[.]),C(x1{p}[.], x2{p}[.]) @ mod_rate //AC

modifies x2

17 /* Observation */

18 %obs: 'AB' |A(x[x.B])|

19 %obs: 'Cuu' |C(x1{u}, x2{u})|

20 %obs: 'Cpu' |C(x1{p}, x2{u})|

21 %obs: 'Cpp' |C(x1{p}, x2{p})|

22 /*Initial conditions */

23 %init: 1000 A(),B()

24 %init: 10000 C(x1{u}, x2{u})

Lines 1-4 of this kappa �le contain signature declarations. Agents of type C have two sites
x1 and x2 whose internal state may be u (unphosphorylated) or p (phosphorylated). Line
11, rule 'ab.c' binds an A connected to someone on site x to a C.

There are two main points to notice about this model: A can modify both sites of C once
it is bound to them. However, only an A bound to a B can connect on x1 and only a free
A can connect on x2. Note also that x2 is available for connection only when x1 is already
modi�ed.

We try �rst a coarse simulation of 100, 000 events (10 times the number of agents in the
initial system).

$ KaSim ABC.ka -u event -l 100000 -p 1000 -o abc.csv

Plotting the content of the abc.csv �le, one notices that nothing signi�cantly interesting

11
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happens to the observables after 250s. So we can now specify a meaningful time limit by
running:

$ KaSim ABC.ka -l 250 -p 0.25 -o abc.out

which produces the data points whose rendering is given in Fig. 1.1.

Figure 1.1: Simulation of the ABC model: population of unmodi�ed Cs (in red is the observ-
able Cuu) drops rapidly and is replaced, in a �rst step by simply modi�ed Cs (in blue is the
observable Cpu) which are in turn replaced by doubly modi�ed Cs (in red is the observable
Cpp). Note that, the population of AB complexes (observable AB in black) stabilizes slightly
below 400 individuals after about 20s.

We will use variant of this model as a running example for the next chapter.

12



Chapter 2

The Kappa language

2.1 General structure

A model is represented in Kappa by a set of Kappa Files. We use KF to denote the union
of the �les that are given as input to a tool.

A KF is composed of a list of declaration. Declarations can be: agent and token signatures

(Sec. 2.3), rules (Sec. 2.5), variables (Sec. 2.4), initial conditions (Sec. 2.6), intervention
(Sec. 2.7) and parameter con�gurations (Sec. 5.4).

The KF's structure is quite �exible. Neither dividing into several sub-�les nor the order
of declarations matters (for the exception of interventions and variable declarations, see
respectively Sections 2.7 and 2.4 for details).

Comments works like in the C language. It can be used either by inserting the marker //
that tells KaSim to ignore the rest of the line or by putting any text between the delimiters
/* and */.

The following sections present formal grammars. Here are hints to read them. Terminal
symbols are written in (blue) typed font, and ε stands for the empty list. An identi�er
Id can be any string generated by a regular expression of the type _ [a-z A-Z 0-9 _ −
+]+|[a-z A-Z][a-z A-Z 0-9 _ − +]∗.

2.2 Sited-graph pattern: Kappa expression

The state of the system is represented in Kappa as a sited graph: a graph where edges use
sites in nodes. One must think sites as resources. At most one edge of the graph can use a

13
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site of a node (representing an agent in our case). Moreover, all the sites of an agent must
have di�erent names.

This leads to the property that an embedding between 2 sited graphs is completely de�ned
by the image of one node. This is absolutely critical for the e�ciency and we call this
concept the rigidity of Kappa.

Table 2.1: Kappa expressions.
Kappa_expression ::= agent_expression , Kappa_expression | ε
agent_expression ::= Id(interface)

interface ::= Id internal_state link_state , interface | ε
internal_state ::= ε | {.} | {Id}
link_state ::= ε | [.] | [n] | [_] | [#] | [Id.Id]

2.2.1 Graphs

The ASCII syntax we use to represent sited graphs follows the skeletons (describe formally
in Table 2.1):

� We write the type of the agent and then its interface (the space separated list its
sites) between parenthesis.

� The state of a site is written after its name. Sites can have 2 kind of states: a linking
state and an internal states. The order in which they are speci�ed does not matter.

� The linking state of a site is written in between squared brackets: []

� The internal state of a site is written in between curly brackets: {}

� When the site is free (i.e. it is not a member of an edge), its linking state is written
with a dot: [.]. For example, the following graph:

A
x

y pz0

is written as A(x[.], y{p}[.], z{e0}[.]).

� When a site is a part of an edge, one assign an arbitrary positive integer identi�er n
to this edge and one specify the appurtenance of the site to this edge by writing the
linking state [n]. The following graph:

14
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AA

A

x

x

x

y

y

y

u

u

u

zz

z

1
1

1

can be reprensented as A(x[23], y[4]{u}, z{e1}[.]), A(x[4], y{u}[95], z{e1}[.]),
A(x[95], y{u}[23], z{e1}[.]).

Remark Each link identi�er appears exactly twice.

2.2.2 Patterns

Kappa strength is to describe transformations by only mentioning (and storing) the relevant
part of the subgraph required for that transformation to be possible. This is the don't care,
don't write (DCDW) principle which plays a key role in resisting combinatorial explosion
when writing models.

If a transformation occurs independently from the state of a site of an agent, do not mention
it in the pattern to match. The pattern A(x[.],z[.]) represents an agent of type A whose sites
x and z are free but the sites y and z can be in any internal state and the site y can be
linked or not to anything.

If the link state of a site does not matter but the internal state does, just mention it.
An agent A whose sites x and z are free, y is in state u and z in state e2 is written as
A(x[.],y{u},z{e2}[.]).

A state that is modi�ed (by a rule that will be presented just below) always matter. For
such situation, the symbol # (meaning �whatever� state) has been introduced.

2.2.3 Link type

In Kappa, in order to require a site to be bound for an interaction to occur, one may
use the semi-link construct [_] which does not specify who the partner of the bond is.
For instance, in the following instruction: /%var: 'ab'|A(x[_]),B(y[_])|, the variable
'ab' will count the number of As and Bs connected to some agents, including the limit case

15
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A(x[1]),B(y[1]). It is sometimes convenient to specify the type of the semi-link, in order
to restrict the choice of the binding partner. For instance, in the following instruction:
/%var: 'ab'|A(x[y.B]),B(y[x.A])|, the variable 'ab' will count the number of As whose
site x is connected to a site y of B, plus the number of Bs whose site y is connected to a site
x of A. Note that, this still includes the case A(x[1]),B(y[1]).

Remark Transformations on semi-links and links type induce side e�ects (e�ect on un-
mentioned agents/unmentioned site of agent) and can even do not make sense at all. What
would mean to remove the link to A but not the link to B in the example above? Be careful
when one use them.

2.3 Agent signatures

Kappa tools can seek in the KF what agents are used, what sites they have and what states
the sites are in but it is error prone: just make a typo once and the tools won't complain
and create a nonsens new agent/site/states...

To avoid that, Agent signatures can be de�ned and tools will then ensure that agents respect
their signature.

Agent signatures list all the agents that will appear in the KF. They enumerate the name
of interaction sites an agent has. They provide information about sites binding capabilities.
They specify whether a site has internal state and if so give the possibilities.

A signature is declared in the KF by the following line:

%agent: signature_expression

according to an extention of the grammar given in Table 2.1. Linking states and internal
states are space separated lists instead of being singleton. Site binding capabilities are
speci�ed by giving a list typed semi-links.

For instance, the line:

1 /%agent: A(x[y.A], y{u p}[x.A], z{e0 e1 e2}) // Signature of

agent A

will declare an agent A with 3 (interaction) sites x,y and z, the site y possessing two internal
states u and p (for instance, for the unphosphorylated and phosphorylated forms of y) and
the site z having three possible states e0, e1 and e2, sites x and sites y being able to bind
(intra agent or inter agents).

16
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Special case If no agent signature provides any site binding capabilities, constraints are
released and any site of any agent is allowed to bind any site of any agent.

2.4 Algebraic expressions, variables and observables

Algebraic expressions original purpose was to de�ne kinetic rates for rules but many compo-
nents of a KF will now implies algebraic expressions. Their syntax are de�ned in Table 2.2
(available symbols for variable, constants and operators are given in Table 2.3).

Table 2.2: Algebraic expressions.
algebraic_expression ::= x ∈ R | variable

| algebraic_expression binary_op algebraic_expression

| tcbunary_op (algebraic_expression)

| boolean_expression [?] algebraic_expression

[:] algebraic_expression

The last item of the list is an if-expression. boolean_expression are described in Table 2.7.
Think very carefully whether it is the correct thing to do before using it. Mechanistic
conditions have to be expressed in rule bodies and not in rule rates!

It is possible to declare variables for later use with the declaration:

%var: 'var_name' (algebraic_expression)

where var_name can be any string. For instance, the declarations

1 /%var: 'homodimer ' |A(x[1]),A(x[1])|

2 %var: 'aa' 'homodimer '/2

de�ne two variables, the �rst one tracking the number of embeddings of A(x[1]),A(x[1]) in
the graph over time, while the second divides this value by 2: the number of automorphisms
in A(x[1]),A(x[1]). Note that variables that are used in the expression of another variable
must be declared beforehand.

More importantly, KaSim may output values of an algebraic expression in the data �le (see
option -p in Chapter 4) by using the primitive

1 /%plot: 'var_name '

One may use the shortcut:

%obs: 'var_name' algebraic_expression

to declare a variable and at the same time require it to be outputted in the data �le.

17
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Table 2.3: Symbols usable in algebraic expressions.

variable Interpretation

[E] the total number of (productive) simulation events
since the beginning of the simulation

[E-] the total number of null events
[T] the bio-time of the simulation
[Tsim] the cpu-time since the beginning of the simulation
'v' the value of variable 'v' (declared by using the %var: statement)
|t| the concentration of token 2.5.5 t

|Kappa_expression | number of occurences of the pattern Kappa_expression

inf symbol for ∞

unary/binary_op Interpretation

[f] usual mathematical functions and constants
with f ∈ {log,exp,sin,cos,tan,sqrt,pi}

[int] the �oor function x ∈ R 7→ bxc ∈ Z
+,-,*,/,^ basic mathematical operators (in�x notation)
[mod] the modulo operator (in�x notation)
[max] the maximum of two values
[min] the minimum of two values

18
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2.5 Rules

Dynamics of agents is described in the KF by de�ning rules.

There are two ways of specifying rules:

1. following the chemical intuition (with the burden of a subtle before/after correspon-
dance), by giving two Kappa_expressions. The �rst one, called left hand side (LHS),
represents what one need to apply the rule. The second, the right hand side (RHS),
describes what one obtain once the rule is applied. In Kappa, they are separated by
an arrow →.

2. by giving one Kappa_expression with edition. The Kappa expression still represents
the necessary context for the rule to apply. Modi�cations are speci�ed locally inside
the expression right after tests.

Both are allowed in Kappa and are described in both next subsections.

In any case, rule speci�cation is optionally pre�xed by a rule name (written between two
symbols ') and always followed by a rule rate. Rate expressions (which are syntactically
algebraic expressions) are given by the grammars in Table 2.5 and Table 2.2 (respectively)
but can be thought at �rst as positive real numbers.

A complete rule in the chemical representation looks like:

'rule name' Kappa_expression → Kappa_expression @ rate

One may also declare a bi-directional rule in chemichal notation by using the conven-
tion:

'bi-rule' Kappa_expression ↔ Kappa_expression @ rate+,rate−

The above declaration is equivalent to write, in addition to the rule named 'bi-rule' and
another rule named 'bi-rule_op' which swaps left and right hand sides, and has rate
rate−.

2.5.1 Chemical notation rules

This is the most intuitive representation. Nevertheless, it induces duplication of the un-
modi�ed context between LHS and RHS which can lead to even more errors when edition
a posteriori on the left are not correctly reported on the right.
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A simple rule

With the signature of A de�ned in Section 2.3, the line

1 /'A dimerization ' A(x[.]),A(y{p}[.]) -> A(x[1]),A(y{p}[1]) @ '

gamma'

declares a dimerization rule between two instances of agent A provided the second agent is
phosphorylated on site y (this is the meaning of p).

Remember that the identi�er [1] of the bound is arbitrary and that following DCDW, the
site z of A is not mentioned in the expression because it has no in�uence on the triggering
of this rule.

Degradation and synthesis

In the RHS of a rule, the k-th agent must correspond to the (transformed) k-th agent of
the LHS.

If one want to create or delete agent, one must put a ghost agent (written with a dot) at
their corresponding place on the left/right hand side of the rule.

Sticking with A's signature, one can express that an unphosphoralated A can collapse if not
linked to anyone (regardless of the state of z) by writing

1 /'destroy A' A(x[.], y{u}[.], z[.]) -> . @ 'gamma'

Similarly, the rule

1 /'building A' A(z[.]), . -> A(z[1]),A(x[1]) @ 'gamma'

indicates that an agent A is free on site z, no matter what its internal state is, may beget
a new copy of A bound to it via site x.

Note that in the RHS, the interface of the new copy is not completely described. Following
the DCDW convention, KaSim will assume that the sites that are not mentioned are created
in the default state, i.e. they appear free of any bond and their internal state (if any) is the
�rst of the list shown in the signature (here state u for y and 0 for z).

Side e�ects

It may happen that the application of a rule has some side e�ects on agents that are not
mentioned explicitly in the rule. Consider for instance the previous rule:
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1 /'deleting A' A(x[1]), A(z[1]) -> A(x[.]), . @ 'gamma'

The A in the graph that is matched to the second occurrence of A in the LHS will be deleted
by the rule. As a consequence, all its sites will disappear together with the bonds that were
pointing to them. For instance, when applied to the following graph:

G =A(x[1],y{p}[.],z{e2}[.]), A(x[2], y{u}[.], z{e0}[1]), C(t[2])

the above rule will result in a new graph G′ = A(x[1],y{p}[.],z{e2}[.]),C(t[.]) where
the site t of C is now free as side e�ect.

Whatever symbols for link state [#] (for whatever state bound or not), [_] (for bound to
some site), may also induce side e�ects when they are not preserved in the RHS of a rule,
as in

1 /'Disconnect A' A(x[_]) -> A(x[.]) @ 'gamma'

or

1 /'Force bind A' A(x[#]),C(t[.]) -> A(x[1]),C(t[1]) @ 'gamma'

To avoid mistakes, sites and states mentioned on the left must be exactly the same as sites
mentioned on the right. Use the explicit �whatever� [#] state when needed.

2.5.2 Edit notation rules

Near any modi�ed element, modi�cation is speci�ed. Created agents are post�xed by a +.
Degraded agents are post�xed by a −. Site modi�cations are described by writing the new
(linking or internal) state after the symbol / inside the (curly/squared) bracket. Therefore,
/. (inside squared brackets) means that the site becomes free, /9 means that the site becomes
part of link 9 and /zzz inside curly brackets means that the new internal state of the site
is zzz.

Here are all the rules mentioned above (+1 extra) translated in this unambiguous nota-
tion:

1 /'A dimerization ' A(x[./1]),A(y{p}[./1]) @ 'gamma'

2 'destroy A' A(x, y{u}, z)- @ 'gamma'

3 'building A' A(z[./1]), A(x[1])+ @ 'gamma'

4 'deleting A' A(x[1/.]), A(z[1])- @ 'gamma'

5 'weird' A(z[1])-, A(x[1])-, A(x[.])+ @ 'gamma'

6 'Disconnect A' A(x[_/.]) @ 'gamma'

7 'Force bind A' A(x[#/1]), C(t[./1]) @ 'gamma'

8 'phos C' C(x1{u/p}[1/.]),A(c[1/.]) @ 'modrate '
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2.5.3 Rates

Kappa rules are equipped with one (or two) kinetic rate(s). A rate is an algebraic expression
(often simply a real number) evaluated as such, called the individual-based or stochastic rate
constant , it is the rate at which the corresponding rule is applied per instance of the rule.
Its dimension is the inverse of a time [T−1].

The stochastic rate is related to the concentration-based rate constant k of the rule of
interest by the following relation:

k = γ(A V )(a−1) (2.1)

where V is the volume where the model is considered, A = 6.022 · 1023 is Avogadro' s
number, a ≥ 0 is the arity of the rule (i.e. 2 for a bimolecular rule).

In a modelling context, the constant k is typically expressed using molars M := moles l−1

(or variants thereof such as µM , nM), and seconds or minutes. If we choose molars and
seconds, k' s unit is M 1−as−1, as follows from the relation 2.1.

Concentration-based rates are usually favoured for measurements and/or deterministic
models, so it is useful to know how to convert them into individual-based ones used by
KaSim. Here are typical volumes used in modelling:

� Mammalian cell: V = 2.25 10−12l (1l = 10−3m3), and AV = 1.35 1012.

A concentration of 1M in a mammalian cell volume corresponds to 1.35 1012 molecules;
1nM ≈ 1350 molecules per cell.

� Yeast cell (haploid): V = 4 10−14l, and AV = 2.4 1010.

A concentration of 1M in a yeast cell volume corresponds to 2.4 1010 molecules;
1nM ≈ 24 molecules per cell. The volume is doubled in a diploid cell.

� E. Coli cell: V = 10−15l, and AV = 108.

A concentration of 1M in a yeast cell volume corresponds to 108 molecules; 10nM ≈ 1
molecule per cell.

The table 2.4 lists typical ranges for deterministic rate constants and their stochastic coun-
terparts assuming a mammalian cell volume.

2.5.4 Ambiguous molecularity

Using a Kappa rule of the form A(x[.]),B(y[.])→ . . . @ γ is not a good practice, where
this rule could be applied in a context where A and B are sometimes already connected
and sometimes disconnected. This would lead to an inconsistency in the de�nition of the
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Table 2.4: Example of kinetic rates.

process k γ

general binding 107 − 109 10−5 − 10−3

general unbinding 10−3 − 10−1 10−3 − 10−1

dephosphorylation 1 1
phosphorylation 0.1 0.1
receptor dimerization 2 106 1.6 10−6

receptor dissociation 1.6 10−1 1.6 10−1

kinetic rate γ which should have a volume dependency in the former case and be volume
independent in the latter case (e.g. see Section 2.5.3).

This sort of ambiguity should be resolved, if possible, by re�ning the ambiguous rule into
cases that are either exclusively unary or binary. Each re�nement having a kinetic rate that
is consistent with its molecularity. Note that in practice, for models having a large number
of agents, it is su�cient to assume that the rule A(x[.]),B(y[.])→ . . . @ γ will have only
binary instances. In this case, it su�ces to consider the approximate model:

1 /'assumed binary AB' A(x[.]),B(y[.]) -> ... @ 'ga_2'

2 'unary AB' A(x[.],c[1]),C(a[1],b[2]),B(y[.],c[2]) -> ... @ 'k_1

'

There exist systems where enumerating unary cases becomes impossible or where the ap-
proximation on binary instances is wrong. As an alternative, one should use the Kappa
notation for ambiguous rules:

'my rule' Kappa_expression → Kappa_expression @ γ2{k1}
which will tell KaSim to apply the rule named 'my rule' with a rate γ2 for binary instances
and a rate k1 for unary instances.

The obtained model will behave exactly as a model in which the ambiguous rule has been
replaced by unambiguous re�nements. However the usage of such rule slowdowns simulation
in a signi�cant manner depending on various parameters (such as the presence of large
polymers in the model). We give below an example of a model utilizing binary/unary rates
for rules1.

1 /%agent: A(b,c)

2 %agent: B(a,c)

3 %agent: C(b,a)

4 //

1This model is available in the source repository models/poly.ka.

23



2.5. RULES

K
a

S
p mipa

5 %var: 'V' 1

6 %var: 'k1' INF

7 %var: 'k2' 1.0 E-4/'V'

8 %var: 'k_off' 0.1

9 //

10 'a.b' A(b[.]),B(a[.]) -> A(b[1]),B(a[1]) @ 'k2'{'k1'}

11 'a.c' A(c[.]),C(a[.]) -> A(c[1]),C(a[1]) @ 'k2'{'k1'}

12 'b.c' B(c[.]),C(b[.]) -> B(c[1]),C(b[1]) @ 'k2'{'k1'}

13 //

14 'a..b' A(b[a.B]) -> A(b[.]) @ 'k_off'

15 'a..c' A(c[a.C]) -> A(c[.]) @ 'k_off'

16 'b..c' B(c[b.C]) -> B(c[.]) @ 'k_off'

17 //

18 %var: 'n' 1000

19 //

20 %init: 'n' A(),B(),C()

21 %mod: [E] = 10000 do $STOP "snap.dot";

Notice at lines 10-12 the use of binary/unary notation for rules. As a result binding be-
tween freely �oating agents will occur at rate 'k2' while binding between agents that are
part of the same complex will occur at rate 'k1'. Line 21 contains a intervention that
requires KaSim to stop the simulation after 10,000 events and output the list of molecu-
lar species present in the �nal mixture as a dot �le (e.g. see Section 2.7) that we give in
Figure 2.1.

Figure 2.1: Final mixture of simulation of the poly.ka model. The in�nite rate for cycle
closure allows one to obtain a large number of triangles.

For rules with unary rates, one can also specify a horizon. For example in the following
rule:
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1 /'a.b' A(b[.]),B(a[.]) -> A(b[1]),B(a[1]) @ 'k2'{'k1':5}

the unary rate is applied only when the agents A and B are at a horizon 5 (or closer), of
each other. Horizon is an algebraic expression. It is always truncated to a positive integer
during simulation. This feature can change in the future.

Table 2.5: Rate expressions.
rate_expression ::= algebraic_expression

| algebraic_expression {algebraic_expression:algebraic_expression}

2.5.5 Hybrid rules

In Kappa, there can be a special treatment of entities that cannot bind anything: tokens.
Tokens can only appear or disappear, they are typically used to represent small particles
such as ions, ATP, etc.

Tokens may have a continuous concentration.

Token signatures are declared using a statement of the form:

1 /%token: ca+ # Signature of calcium token

It is possible to mix agents and tokens in hybrid rules (which may also be bi-directional).
A hybrid rule has the following form:

Kappa_expression | token_expression→ Kappa_expression | token_expression @ rate

Token expressions follow the grammar in Table 2.6.

Table 2.6: Token expressions.
token_expression ::= algebraic_expression token_name

| token_expression , token_expression

token_name ::= Id

Using Kappa hybrid rules, one may declare that an action has e�ects on the concentration
of some particles of the system. For instance, a rule may consume atp, calcium ions, etc.
It would be a waste of memory and time to use discrete agents to represent such particles.
Instead one may declare tokens using declarations of the form:

1 /%token: atp

2 %token: adp
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One may then use these tokens in conjunction with a classical rule using the hybrid for-
mat:

1 /'hybrid rule' S(x{u}[1]),K(y[1]) | 0.2 atp -> S(x{p}[.]),K(y

[.]) | 0.1 adp @ 'k'

When applied, the above rule will consume 0.2 atp token and produce 0.1 adp token.
Note that as speci�ed by the grammar given in Table 2.6, the number of consumed (and
produced) tokens can be given by a sum of the form:

lhs | a1 t1, ..., an tn → rhs | a′1 t′1, ..., a′k t′k @ r

where each ai, a′i is an arbitrary algebraic expression (e.g. see Table 2.2) and each ti, t′i is a
declared token. In the above hybrid rule, denoting by ni, n′i the respective evaluation of ai
and a′i, the concentration of token ti will decrease from ni and the concentration of token
t′i will increase from n′i.

Importantly, the activity of a hybrid rule is still de�ned by |lhs |*r, where |lhs | is the
number of embeddings of the LHS of the rule in the mixture, and does not take into account

the concentration of the tokens it mentions. It is however possible to make its rate explicitly
depend on the concentrations of the tokens using a variable rate.

Consuming t tokens is strickly equivalent to producing −t tokens. All variations in amount
of tokens can be written on the RHS of rules. This is what is done in edit notation when
tokens are used:

1 /'hybrid rule' S(x~u/~p!1/),K(y!1/) | (-0.1) atp @ 'k'

The variations make clear that the simulator does not check that the consumed amount of
token is available. It consumes tokens even if the quantity becomes then negative!

2.6 Initial conditions

The initial mixture to which rules in the KF will be applied are declared as follows:

%init: algebraic_expression Kappa_expression

or:

%init: algebraic_expression token_name

where algebraic_expression is evaluated before initialization of the simulation (hence all
token and Kappa expression values in the expression are evaluated to 0). This will add to
the initial state of the model multiple copies of the graph described by the Kappa expression.
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The DCDW convention allows us not to write the complete interface of added agents (the
remaining sites will be completed according to the agent's signature). For instance:

1 /%var: 'n' 1000

2 %init: 'n' A(),A(y{p})

3 %init: 0.39 ca2+ //mM

will add 1000 instances of A in its default state A(x[.],y{u}[.],z{e0}[.]), 1000 instances
of A in state A(x[.],y{p}[.],z{e0}[.]) and a concentration of 0.39 mM of calcium ions.
Recall that the concentration of calcium can be observed during simulation by using the
expression |ca2+|. As any other declaration, %init can be used multiple times, and agents
will add up to the initial state.

2.7 Intervention language

Getting something out of a model is done like in lab experiment through intervention.

Each intervention directive is splitted in 4 parts:

clock When trying to intervene should be considered

condition what is the condition under which the intervention is triggered

intervention what are the interventions

repeatition if the intervention is triggered, under what condition should it be still tried
afterward

There are 3 categories of intervention:

modi�cation where the model is changed at the time of trigger (a special rule applied, a
variable changed, the simulation stopped)

immediate measurement where a measure is taken at the time of trigger (value of %plot
printed, the current status of the mixture output, ...)

continuous measurement switch where you start or stop a measurement at time of
trigger

They are all described in detail below.

2.7.1 directive syntax

The general syntax is
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%mod: alarm �oat boolean_expression do e�ect_list repeat boolean_expression

for

%mod: clock condition do intervention repeat repeatition

and syntactic sugar detailed below is provided.

Boolean_expression and e�ect_list are de�ned by the grammar given in Table 2.7 (the
operator rel can be any usual binary relation in {<,=, >} and algebraic expressions are
de�ned in Table 2.2).

Table 2.7: Intervention expressions.
boolean_expression ::= algebraic_expression rel algebraic_expression

| (boolean_expression || boolean_expression)
| (boolean_expression && boolean_expression)
| [not] boolean_expression

| [true] | [false]

e�ect_list ::= e�ect ; e�ect_list | e�ect

e�ect ::= $ADD algebraic_expression agent_expression

| $DEL algebraic_expression agent_expression

| token_name <- algebraic_expression

| $SNAPSHOT string_expression

| $STOP string_expression

| $DIN string_expression boolean

| $TRACK 'var_name' boolean

| $UPDATE 'var_name' algebraic_expression

| $PLOTENTRY
| $PRINT string_expression <string_expression>

| $SPECIES_OFF string_expression Kappa_expression boolean

string_expression ::= ε | "string" . string_expression

| algebraic_expression . string_expression

boolean ::= [true] | [false]

There are 2 kind of clocks, an event based one and simulation time ones.

The event based one has the empty string for syntax: if nothing is written for clock, it uses
the event based clock. It �res at the beginning of the simulation and every time a rule has
just �red.
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The time based one syntax is alarm �oat, it �res every amount of time unit given by the
�oat (including at [T]=0).

For example /%mod: alarm 2.3 [true] do $PLOTENTRY; repeat [true] will print a line
in the data �le every 2.3 time unit of simulation whereas /%mod: |A()| > 1000 do $PLOTENTRY

; repeat |B(x[_])| < |B(x[.])| will do it every event where there is more than 1000
A up to the �rst event where (there is more than 1000 A) and the number of /|B(x[_])|
becomes bigger than the number of /|B(x[.])|.

When the conditions of several interventions that are tested at the same moment are satis-
�ed simultanously, interventions are triggered in the order in which they have been declared
in the KF. A intervention can only be �red once per event loop.

2.7.2 shortcuts

If the repeat keyword and the repeat condition are ommited, it is assumed that it is /repeat
[false] aka a one-shot intervention.

If the (pre)condition is ommited, it is considerated to be /[true] unless both conditions
are ommited and a clock is provided. In this case the implicit condition is /[T] > 0 so that
/%mod: alarm 5.8 do effects is somehow a 'at' operator. It means �do effects at [T]
= 5.8�.

2.7.3 Model modi�cation

Applying a rule during a simulation

Special cases: simply adding or deleting agents Continuing with the ABC model,
the intervention e�ect: /$ADD n C(x1~p) will add n ≥ 0 instances of C with x1 already
in state p (and the rest of its interface in the default state as speci�ed line 4 of ABC.ka).
Also the intervention e�ect: /$DEL |B(x!_)| B(x!_) will remove all Bs connected to some
agent from the mixture.

There are various ways one can use interventions to study more deeply a given Kappa model.
A basic illustration is the use of a simple intervention to let a system equilibrate before
starting a real simulation. For instance, as can be seen from the curve given in Fig. 1.1, the
number of AB complexes is arbitrarily set to 0 in the initial state (all As are disconnected
from Bs in the initial mixture). In order to avoid this, one can modify the Kappa �le in
the following way: one sets the initial concentration of C to 0 by deleting line 22. Now
one introduces Cs after 25 t.u using the intervention: /%mod: [T]=25 do $ADD 10000 C()

;.

29



2.7. INTERVENTION LANGUAGE

K
a

S
p mipa

The modi�ed Kappa �le is available in the source repository, in the model/ directory (�le
abc-pert.ka). Run a simulation again (a bit longer) by entering in the command line:

$ KaSim ABC-pert.ka -l 300 -p 0.3 -o abc2.out

one obtains the curve given in Fig. 2.2.

Figure 2.2: Simulation of the ABC model with a intervention: for t<25s, only 'a.b' and
'a..b' rules may apply. This enables the concentration of 'AB' complexes to go to steady
state, before introducing fresh Cs at t=25s.

Updating kinetic rates on the �y

Any variable between simple quotes can be updated during a simulation using a declaration
of the form: /%mod: 'Cpp'> 500 do $UPDATE 'k_on'0.0;

This intervention will be applied whenever the observable 'Cpp' will become greater than
500. Its e�ect will be to set the on rate of all binding rules to 0. Note that, according to
the grammar given in Table 2.7, one may use any algebraic expression as the new value
of the variable. For instance: /%mod: 'Cpp'> 500 do $UPDATE 'k_on''k_on'/100; will
cause the on rate of all rules to decrease a hundred fold. Note that, it is possible to override
the kinetic rate of a speci�c rule: in our ABC example, the declaration: /%mod: 'Cpp'>

500 do $UPDATE 'a.b'inf; will set the kinetic rate of rule 'a.b' to in�nity.
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Interrupt simulation

The intervention $STOP will interrupt the simulation. It returns the hand to the user if one
run in interactive mode or terminates the run in batch mode.

The intervention $STOP "final_state.ka" will in addition produce a snapshot of the last
mixture.

2.7.4 Model immediate examination

Advanced and/or experimental examinations are listed in chapter 5.

Get a snapshot of the mixture

A snapshot is an instant photography of the current state of the mixture (a dump of the
state at a given moment in the simulation).

A snapshot is suitable as an initial condition for a model. In the previous example, we let
the system evolve for some time without its main reactant C in order to let other reactants
go to a less arbitrary initial state. One may object that this way of proceeding is CPU-time
consuming if one has to do this at each simulation.

An alternative is to use the $SNAPSHOT primitive that allows a user to export a snapshot
of the mixture at a given time point as a new (piece of) Kappa �le. For instance, the
declaration: /%mod: [E-]/([E]+[E-])>0.9 do $SNAPSHOT "prefix"; will ask KaSim to
export the mixture the �rst time the percentage of null events reaches 90%. The exported �le
will be named prefix_n.ka where n is the event number at which the snapshot was taken.
One may also use a string_expression to construct any pre�x using local variables.

One may omit to de�ne a pre�x and simply type: /%mod: [E-]/([E]+[E-])>0.9 do

$SNAPSHOT; in which case the default pre�x snap.ka will be used for naming snapshots.

If the name already exists, a counter will be appended at the end of the �le to prevent
overwriting. Snapshots can be performed multiple times, for instance every 1,000 events,
using the declaration:

1 /%mod: ([E] [mod] 1000)=0 do $SNAPSHOT "abc.ka"; repeat [true]

which results in KaSim producing a snapshot every 1000 (productive) events until the
simulation ends.

Note that instead of producing Kappa �les, one may use snapshot interventions to produce
an image of the mixture in the dot/html format using the parameter by specifying the

31



2.7. INTERVENTION LANGUAGE

K
a

S
p mipa

extention in the name skeleton (/%mod: [E-]/([E]+[E-])>0.9 do $SNAPSHOT "snap.dot

";).

Printing values during a simulation

The e�ect $PRINT string_expression >string_expression enables one to output values
during a computation to:

� standard output if the second string_expression and the > are ommited,

� to the �le speci�ed by the second string_expression otherwise.

For instance:

1 /%mod: |A|<0 do

2 $PRINT ("Token A is: " . |A| . " at time =". [T]) > (" token_

".[E].". dat");

3 repeat [true]

will ask KaSim to output the value of token A in a �le "token_n.dat" which changes at each
new productive event, each time its value gets below 0.

Add an entry in the output data

The e�ect $PLOTENTRY outputs a line with the current value of observables in the data �le.
For example, /%mod: repeat [E] [mod] 10 = 0 do $PLOTENTRY; until [false] will store
the value of observables every 10 productive events.
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Chapter 3

The Kappa tools

3.1 The KaSim engine

KaSim is a stochastic simulator of rule-based models [12, 11, 13] written inKappa. KaSim takes
one or several Kappa �les as input and generates stochastic trajectories of various observ-
ables. KaSim implements Danos et al 's implicit state simulation algorithm [9] which adapts
Gillespie's algorithm [19, 20] to rule-based models.

A simulation event corresponds to the application of a rewriting rule, contained in the
Kappa �les, to the current graph (also called a mixture). At each step, the next event is
selected with a probability which is proportional to the rate of the rule it is an event of. If
there are no events, i.e. if none of the rules apply to the current state of the system, one
has a deadlock. Note that a given rule will in general apply in many di�erent ways; one says
it has many instances. The activity of a rule is the number of its instances in the current
mixture multiplied by its rate. The probability that the next event is associated to a given
rule is therefore proportional to the activity of the rule. Rule activities are updated at each
step (see Fig. 3.1). Importantly, the cost of a simulation event is bounded by a constant
that is independent of the size of the graph it is applied to [9].

3.2 The KaSa static analyser

KaSa is a static analyser tool of rule-based models [12, 11, 13] written in Kappa. KaSa takes
one or several Kappa �les as input and some command line options to toggle on/o� some
speci�c static analysis. Currently, KaSa can compute the contact map and the in�uence

map. It can perform reachability analysis [15, 10] as well.
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Figure 3.1: The event loop.

A graphical interface is proposed to navigate through the various options and utilities of
KaSa. The compilation of this interface requires labltk and, in particular, tk-dev.

3.3 The KaDE ODEs generator

KaDE is a tool to compile rule-based models [12, 11, 13] written in Kappa into systems of
ordinary di�erential equations, or equivalently into reaction networks. It also supports some
model reduction techniques, that may reduce the dimension of the ODEs (or the number
of di�erent bio-molecular species in reaction networks).

KaDE takes one or several Kappa �les and uses some command line options in order to select
a backend format, tune the semantics, and call some model reduction methods.

A graphical interface is proposed to navigate through the various options and utilities of
KaDE. The compilation of this interface requires labltk and, in particular, tk-dev.
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Chapter 4

The stochastic simulator: KaSim

4.1 General usage

From a terminal window, KaSim can be invoked by typing:

$ KaSim file_1 ... file_n [option]

where file_i are the input Kappa �les containing the rules, initial conditions and observ-
ables (e.g. see Chapter 2). A simulation can generate several �les that are described in the
present chapter. One should really take advantage of the option -d so that these �les all
ends in a distinct directory.

In any case, a log called inputs.ka is generated. This is a valid Kappa �le such that KaSim
inputs.ka reruns exactly the simulation just ran outputing the exact same outputs (using
the same pseudo random numbers!). First line of this �le contains an uuid that is also
present in any �le output during the same run.

Tables 4.1 and 4.2 summarize all the options that can be given to the simulator.

Basically, one can specify an upper bound and a plot period either in simulated or bio-
time (arbitrary time unit), or in number of events. Note that bio-time is computed using
Gillespie's formula for time advance (see Fig. 3.1) and should not be confused with CPU-
time (it is not even proportional).

4.2 Main options

Table 4.1 summarizes the main options that are accessible through the command line.
Options that expect an argument are preceded by a single dash, options that do not need
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any argument start with a double dash.

Two key options are the plot period -p (how often you want a line in the data �le) and the
limit -l of simulation. These quantities can expressed in simulated time (the default) or in
number of event (using -u event).

Table 4.1: Command line: main options.
Argument Description
-u unit Unit of options (time/event)
-l max Terminates simulation after max ≥ 0 unit
-initial min Starts the simulation at min unit (data outputs convienience only)
-p x Plot a line in the data �le every x unit
-o �le Set the name of data �le to �le

Use the extension to determine format ('.tsv', '.svg' or csv else)
-i �le Interpret �le as an input �le name

(for compatibility with KaSim<= 3 and �le names starting by -)
-d dir Output any produced �le to the directory dir

4.3 Advanced options

Table 4.2 summarizes the advanced options that are accessible through the command
line.

Table 4.2: Command line: advanced options.
Argument Description
-rescale r Multiply each initial quantity by r
--no-log Do not generate a reproductability �le
-log file Specify the name of the reproductability �le

(default �inputs�)
-seed n Seeds the pseudo-random number generator n > 0
-rescale r Multiply each initial quantity by r
-make-sim sim_�le Makes a simulation package out of the input KF
-load-sim sim_�le Use simulation package sim_�le as input
--gluttony Simulation mode that is memory intensive

but that speeds up simulation time
-mode batch Set non interactive mode (never halt waiting for an user

action but assume default (data loosing) answer)
-mode interactive Launch the toplevel just after model initialisation
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4.4 Example

The command:

$ KaSim model.ka -u event -l 1000000 -p 1000 -o model.out

will generate a �le model.out containing the trajectories of the observables de�ned in the
Kappa �le model.ka. A measure will be taken every 1000 events in �le model.out. The
command:

$ KaSim init.ka rules.ka obs.ka mod.ka -l 1.5 -p 0.0015

will generate a �le data.csv (default name) containing 1,000 data points of a simulation of
1.5 (arbitrary) time units of the model. The input Kappa �le is split into four �les containing,
for instance, the initial conditions, init.ka, the rule set, rules.ka, the observables, obs.ka,
and the interventions, pert.ka (e.g. see Chapter 2).

4.5 Interactivity

Simulations are interruptible by sending a SIGINT to the simulator. (The easiest way to
send a SIGINT to a process is to press Ctrl-c in the terminal window it runs into.)

In batch mode, this stops the simulation. In other circumstances, it launches a toplevel in
which one can either type:

� $RUN (optionally followed by a pause condition) to resume simulation or

� any of the e�ects described in Section 2.7 to trigger it imediately.

A pause condition is a boolean expression (e.g. Section 2.7) under which the simulator will
stop and fall back in the toplevel in order to allow a new interactive session.

The option -mode interactive interrupts automatically the simulation (and launches the
toplevel) just after the initialization of the simulation.
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Chapter 5

Advanced concepts

5.1 Experimental continuous examination

5.1.1 Causality analysis

In our ABC example, adding the instruction: /%mod: [true] do $TRACK 'Cpp'[true];

will ask KaSim to turn on causality analysis for the observable 'Cpp' since the beginning
of the simulation, and display the causal explanation of every new occurrence of 'Cpp',
until the end of the simulation. The explanation, that we call a causal �ow , is a set of
rule applications ordered by causality and displayed as a graph using dot format. In this
graph, an edge r−→ r' between two rule applications r and r' indicates that the �rst rule
application has used, in the simulation, some sites that were modi�ed by the application of
the former. We show in Fig. 5.1 an example of such causal �ow.

Figure 5.1: Causal �ow for the observable 'Cpp' of the ABC model. Plain arrows represent
causal dependency, dotted arrows show asymmetric con�icts between rule occurrences. Here
the 'ab.c' rule has to occur before the 'a.b' rule. The red observable indicates that the
last rule allowed one to observe a new instance of 'Cpp'.

39



5.1. EXPERIMENTAL CONTINUOUS EXAMINATION

K
a

S
p mipa

Causality analysis of the observable Cpp can be turned o� at any time by using a declaration
of the form: /%mod: [T]>25 do $TRACK 'Cpp'[false];

Each time KaSim detects a new occurrence of the observable that is being tracked, it will
dump its causal past as a graph using the dot format (see Fig. 5.1 above). The name of
the �le in which the causal �ow is stored can be set by using the %def instruction (see
Section 5.4).

Compressing causal �ows.

In general, pure causal �ows will contain a lot of information that modelers may not wish
to consider. Indeed in classical �ows, causality (represented by an edge between to rule
applications in the graph) is purely local. Therefore a sequence a→ b→ c only implies that
an instance of rule a caused an instance of rule b which in turn created an instance of the
observable c. However, it does not imply that a was "necessary" for c to occur (for instance,
c might have been possible before a but not after, and b would be simply re-enabling c). It is
possible to tell KaSim to retain only events that are more strongly related to the observable
using two compression techniques (see Ref. [7] for formal details). Intuitively, in a weakly

compressed causal �ow one has the additional property that if an event e is a (possibly
indirect) cause of the observable, then preventing e from occurring would have prevented
the rest of the causal �ow to occur (i.e. it is not possible to reconstruct a computation
trace containing the observable with the events that remain in the causal �ow). A strongly

compressed causal �ow enjoys the same property with an additional level of compression
obtained by considering di�erent instances of the same rule to be indistinguishable. Note
that, causal �ow compressions may be memory and computation demanding. For large
systems it may be safer to start with weak compressions only.

The type of compression can be set using the %def instruction (see Section 5.4). For instance:
/%def: "displayCompression" "none" "weak" "strong" will ask KaSim to output 3 ver-
sions of each computed causal �ow, with all possible degrees of compressions. Each causal
�ow is outputted into a �le [filename][Type]_n.dot where filename is the default name
for causal �ows which can be rede�ned using the parameter cflowFileName, Type is the type
of compression (either nothing or Strongly, or Weakly) and n is the identi�er of the causal
�ow. For each compression type a summary �le, named [filename][Type]Summary.dat,
is also produced. It allows to map each compressed causal �ow to the identi�er of its un-
compressed version (row #id), together with the production time T and event number E
at which the observable was produced. It also contains information about the size of the
causal �ow.
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Limit the number of �ows

As an example, consider the computation of causal �ows between t = 10 and t = 20 using
the declarations:

1 /%mod: [T]>10 do $TRACK 'Cpp' [true];

2 %mod: [T]>20 do $TRACK 'Cpp' [false];

The above declaration will ask KaSim to analyze each new occurrence of 'Cpp' in that time
interval. If n new instances took place, then KaSim will have to compute n causal �ows.
One may want to bound the number of computed �ows to a certain value, say 10. One may
do so using the combination of interventions and variables given below:

1 /%var: 'x' 0

2 %mod: [T]>10 do ($TRACK 'Cpp' [true] ; $UPDATE 'x' 'Cpp')

3 %mod: [T]>20 || ('x' > 0 && 'Cpp' - 'x' > 9) do $TRACK 'Cpp' [

false];

The �rst line is a declaration of an x variable that is initially set to 0. Note that, the
second line is a intervention that contains two simultaneous e�ects, the �rst one triggering
causality analysis and the second one updating the value of variable x to the current value
of variable 'Cpp'. The last line stops causality analysis whenever time is greater than 20
or when 10 new observables have been found (the di�erence between the current value of
'Cpp' and x).

5.1.2 Dynamic in�uence network

The dynamic in�uence network (DIN) is a powerful observation that tracks, on the �y, the
in�uence that rule applications have on each others. It is dynamically generated and tracks
e�ective impacts (positive or negative) at every rule application. The DIN can be computed
using declarations of the form:

1 /%mod: [true] do $DIN "flux.dot" [true];

2 %mod: [T]>20 do $DIN "flux.dot" [false];

The result is a graph where a positive edge between rules r and s (in green) indicates an
overall positive contribution of r over s. Otherwise, the sum of r applications increased
the activity of s. Conversely, a negative edge (in red) will indicate that r had an overall
negative impact on the activity of s. Note that, the importance of the in�uence between
two rules can be observed by looking at the label on the edges that indicate the overall
activity transfer (positive or negative) between the rules. The above declaration produces
the network shown in Fig. 5.2. Note that, in�uence may vary during time, therefore the
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Figure 5.2: Dynamic in�uence network of the abc.ka model, taken from t=0 to t=20 time
units. The A releasing rules a..b and mod x2 are contributing very little to the activity of
a.c which is a sign of an excess of free As in the system at this time interval.
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time or event limit of the simulation is of importance and will likely change the aspect of
the produced map.

5.1.3 Print species of an observable

The e�ect $SPECIES_OFF tracks the occurrence of an observable. Each time a new instance of
the observable appears, the species in which it occured is printed in a �le. For example:

1 /%mod:$SPECIES_OF "species.ka" A(a!1), B(a!1) [true];

prints in the �le "species.ka" a new line for each new occurrence of A(a!1), B(a!1) with
the time of occurrence and the species in which it occurred.

Note that, this intervention can only be applied if the observable is a connected compo-
nent.

5.2 Implicit signature

KaSim permits users in a hurry to avoid writing agent signatures explicitly using the option
- -implicit-signature of the command line. The signature is then deduced using informa-
tion gathered in the KF. Note that, it is not recommended to use the DCDW convention
for introduced agents in conjunction with the - -implicit-signature option unless the
default state of all sites is mentioned in the %init declarations or in the rules that create
agents.

5.3 Simulation packages

The simulation algorithm that is implemented in KaSim requires an initialization phase
whose complexity is proportional to R ∗ G where R is the cardinal of the rule set and G
is the size of the initial mixture. Thus for large systems, initialization may take a while.
Whenever a user wishes to run several simulations of the same Kappa model, it is possible
to skip this initialization phase by creating a simulation package. For instance:

KaSim abc.ka -l n -make-sim abc.kasim

will generate a standard simulation of the abc.ka model, but in addition, will create the
simulation package abc.kasim (.kasim extension is not mandatory). This package is a
binary �le, i.e. not human readable, that can be used as input of a new simulation using
the command:
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KaSim -load-sim abc.kasim -l k

Note that this simulation is now run for k time units instead of n. Importantly, simulation
packages can only be given as input to the same KaSim that produced it. As a consequence,
recompiling the code, or obtaining di�erent binaries, will cause the simulation package to
become useless.

5.4 Simulation parameters con�guration

In the KF (usually in a dedicated �le) one may use expressions of the form:

%def: "parameter_name" "parameter_value"

where tunable parameters are described in table 5.1 (default values are given �rst in the
possible values column).

5.5 Counters

An agent can have counters, which are sites storing a positive integer. When declaring an
agent, each counter has to be assigned a min and a max value. For instance, the agent
%agent: A(x,c:1 += 4,d:0 +=2) has two counters, named c and d, which range from 1
to 4, and from 0 to 2, respectively.

At initialisation, an initial value for the counter has to be speci�ed.

In rules, all counter tests have to be in the LHS, while the counter modi�cations in the
RHS. A counter test can do three things: (i) check that the counter value is equal to a
positive integer; (ii) check that the counter's value is greater than a positive integer or (iii)
declare a variable, to which the counter's value is assigned. The variable can then be used
in the rate constant.

A counter modi�cation increments or decrements the original counter value. In the following
table, n ≤ 0 and both n and i are integers.

If the counter goes negative, the compilation stops with an error. If the counter goes up
beyond its declared maximum value, the simulation stops with an error.
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Table 5.1: User de�ned parameters.
parameter possible values description
Simulation

"maxConsecutiveClash" "2" or any integer number of consecutive clashes

before giving up

square approximation

"T0" �oat simulation starting time

(outputs convienience only)

"seed" any positive integer pseudo-random number

generator seed

Outputs

"traceFileName" string outputs simulation trace

in the given �le

"outputFileName" string data �le name

"plotPeriod" number then optionally interval between

"events" plot lines
Causality analysis deprecated please use KaStor

"displayCompression" any combination of type of compression

"none", "strong", "weak"

"cflowFileName" "cflow", any string �le name pre�x for causal �ows

"dotCflows" "no", "html" generate causal �ows in html

"yes", "dot" generate causal �ows in dot

"json" generate causal �ows in json

Pretty printing

"dumpIfDeadlocked" "no","yes" snapshot when simulation

is stalled

"colorDot" "no", "yes" use colors in dot format �les

"progressBarSymbol" "#" or any character symbol for the progress bar

"progressBarSize" "60" or any integer length of the progress bar

Table 5.2: Agent signature with counters extends in Table ??
signature_expression ::= Id(sig)

sig ::= Id internal_state_list, sig | Id counter_test counter_modif , sig | ε

Table 5.3: Counter expressions
counter_expression ::= Id counter_test counter_modif | ε
counter_test ::= : n | :> n | :> variable | ε
counter_modif ::= : i | ε
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Chapter 6

The KaSa static analyser

6.1 General usage

From a terminal window, KaSa can be invoked by typing the following command line:

$ KaSa file_1 ... file_n [option]

where file_i are the input Kappa �les containing the rules, initial conditions and observ-
ables (see Chapter 2).

All the options are summarised as follows:

General options

--help Verbose help

-h Short help

--version Show version number

--gui GUI to select

--(no-)expert Expert mode (more options)

Actions

--do-all

launch everything

--reset-all

launch nothing

--(no-)compute-contact-map (default: enabled)

compute the contact map

--(no-)compute-influence-map (default: enabled)

compute the influence map
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--(no-)compute-ODE-flow-of-information (default: disabled)

Compute an approximation of the flow of information in the ODE

semantics

--(no-)compute-potential-cycles (default: disabled)

Compute the bonds that may be involved in polymerisation

--(no-)compute-stochastic-flow-of-information (default: disabled)

Compute an approximation of the flow of information in the stochastic

semantics

--(no-)compute-reachability-analysis (default: enabled)

Compute an approximation of the states of agent sites

--(no-)compute-symmetries (default: disabled)

Look up for pairs of symmetric sites

--(no-)compute-local-traces (default: disabled)

Compute the local traces of interesting parts of agent interfaces

--(no-)compute-separating-transitions (default: disabled)

Compute the transitions that separates strongly connected set of

configurations

-syntax V3 | V4

(default: V4)

Version of the lexer/parser

Syntax

-syntax V3 | V4

(default: V4)

Version of the lexer/parser

Output

--output-directory <value>

Default repository for outputs

--output-contact-map-directory <name> (default: output)

put the contact map file in this directory

--output-contact-map <name> (default: contact)

file name for the contact map output

--output-influence-map-directory <name> (default: output)

put the influence map file in this directory

--output-influence-map <name> (default: influence)

file name for the influence map

--influence-map-format DOT | DIM | HTML

(default: DOT)

Tune the output format for the influence map

--output-local-traces-directory <name> (default: output)
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put the files about local traces in this directory

--local-traces-format DOT | HTML

(default: DOT)

Tune the output format for the local transition systems

--output-log-directory <name> (default: output)

put the log files in this directory

Reachability analysis

--(no-)compute-reachability-analysis (default: enabled)

Compute an approximation of the states of agent sites

--enable-every-domain

enable every abstract domain

--disable-every-domain

disable every abstract domain

--contact-map-domain static | dynamic

(default: dynamic)

contact map domain is used to over-approximate side-effects

--(no-)views-domain (default: enabled)

enable local views analysis

--(no-)double-bonds-domain (default: enabled)

enable double bonds analysis

--(no-)sites-across-bonds-domain (default: enabled)

enable the analysis of the relation among the states of sites in

connected agents

--verbosity-level-for-reachability-analysis Mute | Low | Medium | High |

Full

(default: Low)

Tune the verbosity level for the reachability analysis

--output-mode-for-reachability-analysis raw | kappa | english

(default: kappa)

post-process relation and output the result in the chosen format

Trace analysis

--(no-)compute-local-traces (default: disabled)

Compute the local traces of interesting parts of agent interfaces

--(no-)show-rule-names-in-local-traces (default: enabled)

Annotate each transition with the name of the rules in trace

abstraction

--(no-)use-macrotransitions-in-local-traces (default: disabled)

Use macrotransitions to get a compact trace up to change of the

interleaving order of commuting microtransitions
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--(no-)ignore-trivial-losanges (default: disabled)

Do not use macrotransitions for simplifying trivial losanges

--(no-)compute-separating-transitions (default: disabled)

Compute the transitions that separates strongly connected set of

configurations

--output-local-traces-directory <name> (default: output)

put the files about local traces in this directory

--local-traces-format DOT | HTML

(default: DOT)

Tune the output format for the local transition systems

Contact map

--(no-)compute-contact-map (default: enabled)

compute the contact map

--(no-)compute-potential-cycles (default: disabled)

Compute the bonds that may be involved in polymerisation

--output-contact-map-directory <name> (default: output)

put the contact map file in this directory

--output-contact-map <name> (default: contact)

file name for the contact map output

--contact-map-accuracy-level Low | High

(default: Low)

Tune the accuracy level of the contact map

--polymer-detection-accuracy-level Low | High

(default: High)

Tune the accuracy level of the detection of polymers

--(no-)pure-contact (default: disabled)

show in the contact map only the sites with a binding state

Influence map

--(no-)compute-influence-map (default: enabled)

compute the influence map

--influence-map-accuracy-level Indirect | Direct | Realisable

(default: Direct)

Tune the accuracy level of the influence map

--output-influence-map-directory <name> (default: output)

put the influence map file in this directory

--output-influence-map <name> (default: influence)

file name for the influence map

--influence-map-format DOT | DIM | HTML

(default: DOT)
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Tune the output format for the influence map

Flow of information

--(no-)compute-ODE-flow-of-information (default: disabled)

Compute an approximation of the flow of information in the ODE

semantics

--(no-)compute-stochastic-flow-of-information (default: disabled)

Compute an approximation of the flow of information in the stochastic

semantics

Debugging information

--output-log-directory <name> (default: output)

put the log files in this directory

--(no-)debug (default: disabled)

dump debugging information

--(no-)unsafe-mode (default: enabled)

exceptions are gathered at the end of the computation, instead of

halting it

--(no-)print-efficiency (default: disabled)

prompt CPU time and various datas

(62 options)

Order in options matters, since they can be used to toggle on/o� some functionalities or
to assign a value to some environment variables. The options are interpreted from left to
right.

More options are available in the OCaml �le KaSa_rep/config/config.ml and can be
tuned before compilation.

6.2 Graphical interface

6.2.1 Launching the interface

The graphical interface can be launched by typing the following command line:

$ KaSa

without any option.
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Figure 6.1: KaSa graphical interface - sub-tab Actions.

6.2.2 The areas of interest

There are �ve di�erent areas of importance in the graphical interface:

1. On the top left of the window, a button allows for the selection between the Normal
and the Expert mode (other modes may be available if activated at compilation). In
expert mode, more options are available in the graphical interface.

2. On the top center/right, some button allows for the selection of the tab. There are
currently six sub-tabs available: Actions, Syntax, Output, Reachability analysis,
Trace analysis, Contact map, Influence map.

3. In the center, the options of the selected sub-tab are displayed and can be tuned.

Contextual help is provided when the mouse is hovered over an element.

The interface will store the options that are checked or �lled and the order in which
they have been selected. When launched, the analysis interprets these options in the
order they have been entered.

Some options appear in several sub-tabs. They denote the same option and share the
same value.

4. File selector: The �le selector can be used to upload as many Kappa �les as desired.
The button 'Clear' can be used to reset the selection of �les.
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5. Bottom: Some buttons are available. The button 'Quit' can be used to leave the
interface. The button 'Reset to default' tunes all the options to their default value.
The button 'Import options' can be used to restore the value of the options as saved
during a previous session of the graphical interfaces. The button 'Save options' can
be used to save the value of the options for a further session. The button 'Launch
analyze' launches KaSa with the current options.

Importantly, options are saved automatically under various occasions. Thus, it is
possible to restore the value of the options before the last reset, before the last quit,
or before the last analysis.

6.2.3 The sub-tab Actions

The sub-tab Actions (see Fig. 6.1) contains the main actions which can be performed.

The following options are available:

� The button --do-all activates all the functionalities.

� The button --reset-all inactivates all the functionalities.

� The option --compute-contact-map can be used to (des)activate the computation of
the contact map.

� The option --compute-influence-map can be used to (des)activate the computation
of the in�uence map.

� The option --compute-potential-cycles can be used to (des)activate the compu-
tation of the potential polymers.

� The option --compute-reachability-analysis can be used to (des)activate the
computation of the reachability analysis.

� The option --compute-symmetries can be used to (des)activate the computation
of pairs of equivalent sites. Equivalent sites may be used to reduce the number of
variables in the system of ordinary di�erential equations that is associated to a Kappa
model (e.g. see Sect. 7.3.2).

� The option --compute-local-traces can be used to (des)activate the computation
of the trace analysis.

� The option --compute-separating-transitions can be used to (des)activate the
computation of the transitions that are non weakly reversible. These are the transi-
tions between two con�gurations of an agent, that are impossible to revert (even in
several computation steps).
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Lastly, a switch allows to select the version for Kappa syntax.

6.2.4 The sub-tab Syntax

Figure 6.2: KaSa graphical interface - sub-tab Syntax.

The sub-tab Syntax (see Fig. 6.2) contains the switch to select between the version 3 and
the version 4 of Kappa syntax.

6.2.5 The sub-tab Output

The sub-tab Ouput (see Fig. 6.3) contains the names of the output �les and their for-
mat.

The following options are available:

� The �eld --output-directory can be used to set the repository where output �le
are written. KaSa will create this repository, if it does not exist.

� The �eld --output-contact-map-directory can be used to set the repository where
the output �le for the contact map is written, if a contact map is requested. KaSa will
create this repository, if it does not exist.

� The �eld --output-contact-map contains the name of the �le for the contact map. If
the �le name does not end by it, the proper extension will be added to the �le name.
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Figure 6.3: KaSa graphical interface - sub-tab output.

� The �eld --output-influence-map-directory can be used to set the repository
where the output �le for the in�uence map is written, if an in�uence map is requested.
KaSa will create this repository, if it does not exist.

� The �eld --output-influence-map contains the name of the �le for the in�uence
map. If the �le name does not end by it, the proper extension will be added to the
�le name.

� The format for the in�uence map can be chosen among DOT, DIM, and HTML thanks
to the option --influence-map-format. In format DIM, the output of the in�uence
map is a json �le containing the support of the dynamic in�uence map that has been
introduced in Sect. 5.1.2.

� The �eld --output-local-traces-directory can be used to set the repository where
the output �le for the result of trace analysis is written, if this analysis is requested.
KaSa will create this repository, if it does not exist.

� The format for the local traces can be chosen among DOT and HTML thanks to the
option --local-traces-format.

When a �le already exists, it is overwritten without any warning.
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6.3 Reachability analysis

Figure 6.4: KaSa graphical interface - sub-tab Reachability_analysis.

Reachability analysis aimed at detecting statically properties about the bio-molecular species
that may be formed in a model. Knowing whether, or not, a given bio-molecular species
may be formed in a model is an undecidable problem [21]. Thus, our analysis is approx-
imate. Indeed, it computes an over-approximation of the set of the bio-molecular species
that can be reached from the initial state of the model, by applying an unbounded number
of computation steps. As formalized in [10, 18], the abstraction consists in:

1. �rstly, ignoring the number of occurrences of bio-molecular species (we assume that
whenever a bio-molecular species may be formed, then it may be formed as many
time as it could be necessary),

2. secondly, abstracting a bio-molecular species by the set of its properties.

The analysis takes into account also the chemical species that may be introduced in a
intervention.

The classes of properties of interest are encoded in so called abstract domains, which can
be independently enabled/disabled. The whole analysis can be understood as a mutual re-
cursion between smaller analyses (one per abstract domain), that communicate information
between each other at each step of the analysis. We took the same scheme of collaboration
between abstract domains as in [5].
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As an example, we consider the following model:

1 /%agent: E(x)

2 %agent: R(x,c,cr,n)

3

4 %init: 1 E()

5 %init: 1 R()

6

7 'E.R' E(x[.]),R(x[.]) -> E(x[1]),R(x[1]) @1

8 'E/R' E(x[1]),R(x[1],c[.]) -> E(x[.]),R(x[.],c[.]) @1

9 'R.R' R(x[_],c[.]),R(x[_],c[.]) -> R(x[_],c[1]),R(x[_],c[1]) @1

10 'R/R' R(c[1],cr[.],n[.]),R(c[1],cr[.],n[.]) -> R(c[.],cr[.],n

[.]),R(c[.],cr[.],n[.]) @1

11 'R.int' R(c[1],cr[.],n[.]),R(c[1],cr[.],n[.]) -> R(c[1],cr[2],n

[.]),R(c[1],cr[.],n[2]) @1

12 'R/int' R(cr[1]),R(n[1]) -> R(cr[.]),R(n[.]) @1

13 'obs' R(x[.],c[.],cr[_],n[_]) -> R(x[.],c[.],cr[.],n[.]) @1

Typing the following command line:

KaSa reachability.ka --reset-all --compute-reachability-analysis

will perform the reachability analysis on the model reachability.ka.

We obtain the following result:

Kappa Static Analyzer (v4.0) (without Tk interface)

Analysis launched at 2018/03/30 09:55:29 (GMT-4) on kapput

Parsing ../kappa/reachability.ka...

done

Compiling...

Reachability analysis...

------------------------------------------------------------

* There are some non applyable rules

------------------------------------------------------------

rule obs (File "../kappa/reachability.ka", line 13,

characters 6-59:) will never be applied.

------------------------------------------------------------

every agent may occur in the model

------------------------------------------------------------

* Non relational properties:
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------------------------------------------------------------

E() => [ E(x[.]) v E(x[x.R]) ]

R() => [ R(c[.]) v R(c[c.R]) ]

R() => [ R(n[.]) v R(n[cr.R]) ]

R() => [ R(cr[.]) v R(cr[n.R]) ]

R() => [ R(x[.]) v R(x[x.E]) ]

------------------------------------------------------------

* Relational properties:

------------------------------------------------------------

R() =>

[

R(c[.],cr[.],n[.],x[x.E])

v R(c[c.R],cr[n.R],n[.],x[x.E])

v R(c[c.R],cr[.],n[.],x[x.E])

v R(c[c.R],cr[.],n[cr.R],x[x.E])

v R(c[.],cr[.],n[.],x[.])

]

------------------------------------------------------------

* Properties in connected agents

------------------------------------------------------------

R(c[1]),R(c[1]) =>

[

R(c[1],cr[n.R]),R(c[1],cr[.])

v R(c[1],cr[.]),R(c[1],cr[.])

v R(c[1],cr[.]),R(c[1],cr[n.R])

]

R(c[1]),R(c[1]) =>

[

R(c[1],n[cr.R]),R(c[1],n[.])

v R(c[1],n[.]),R(c[1],n[.])

v R(c[1],n[.]),R(c[1],n[cr.R])

]

------------------------------------------------------------

* Properties of pairs of bonds

------------------------------------------------------------

R(c[c.R],cr[n.R]) => R(c[1],cr[2]),R(c[1],n[2])

R(c[c.R],n[cr.R]) => R(c[1],n[2]),R(c[1],cr[2])

execution finished without any exception

This result is displayed in the standard output, and it is made of six parts.
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The �rst two parts provide an enumeration of dead rules and dead agents. The next parts
display what we call re�nement lemmas. A re�nement lemma is made of a precondition (on
the left of the implication symbol) that is a site graph, and a postcondition (on the right of
the implication symbol) that is a list of site graphs. Each site graph in the post-condition
is a re�nement of the precondition (the position of agent matters: the n-th agent in the
precondition corresponds to the n-th agent in each site graph in the postcondition, but site
graphs in a postcondition may have more agents than the site graph in the corresponding
precondition). The meaning of a re�nement lemma is that every embedding between its
precondition into a reachable state can be re�ned/extended into an embedding from one
site graph in its postcondition into the same reachable state. This way, a re�nement lemma
provides an enumeration of all the potential contexts for the precondition.

We now detail the six di�erent parts:

� Detection of dead rules. A rule is called dead, if there is no trace starting from the
initial state in which this rule is applied. The analysis reports the list of the rules it
has detected to be dead. Due to the over-approximation, it may happen that a dead
rule is not discovered by the analysis. Yet, every rule that is reported as dead, is dead
indeed.

In our example, we notice that the rule `obs' can never be trigered.

� Detection of dead agents. An agent is called dead, if there is no trace starting from
the initial state with at least one state in which this agent occurs. The analysis reports
the list of the agents it has detected to be dead. Due to the over-approximation, it
may happen that a dead agent is not discovered by the analysis. Yet, every agent that
is reported as dead, is dead indeed.

In our example, there are no dead agent.

� Non-relational properties. The analysis detects for each kind of site, the set of
states this site can take. Due to the over-approximation, the analysis reports a super-
set of the set of the potential states. Yet, we are sure that a given site only take states
within this set.

In our example, the site cr of R may be free, or bound to the site n of an agent R.

� Relational properties. The analysis detects some relationships among the states
of packs of sites within each agent, hence capturing potential valuations for local
views [15, 10]. Due to the over-approximation of the analysis, the analysis may fail
in discovering a relationship. But each relationship that is found by the analysis is
satis�ed.

In our example, the states of the sites c, cr, n, and x of R are entangled with a
relational property (othewise, we would have 52 elements in the post-condition).
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� Properties in connected agents. When two agents are connected, there may be a
relation among the states of theirs respective sites. This abstraction [18] collects for
each kind of bonds, the relation between the state of one site in the �rst agent and
the state of one site in the second agent. Due to the over-approximation, the analysis
reports a super-set of the set of the potential pairs of states.

This abstraction aimed at capturing information about protein transportation. It is
quite common to model the location of a protein as the internal state of a �ctitious
site. With such an encoding, it might be important to ensure that two connected
proteins are always located in the same location. This abstraction focuses on this
kind of properties.

� Properties of pairs of bonds.

It might be interesting to know whether a protein can be bound to another protein
twice simultaneously, and whether a protein can be bound to two instances of a same
protein simultaneously. This abstraction [18] captures this kind of constraint. It can
be used to prove that some proteins do not polymerize.

In our example, when a R has its sites cr and c bound, they are necessarily bound to
the same instance of R. The same statement holds for the sites cr and n.

Kappa Static Analyzer (v4.0) (without Tk interface)

Analysis launched at 2018/03/30 09:55:29 (GMT-4) on kapput

Parsing ../kappa/reachability.ka...

done

Compiling...

Reachability analysis...

execution finished without any exception

Figure 6.5: Reachability analysis of the model reachbility.ka with verbosity level �Mute�.

Applying rule obs (File "../kappa/reachability.ka", line 13, characters

6-59:):

the precondition is not satisfied yet

Figure 6.6: Reachability analysis: one rule that cannot be applied yet, according to the
bio-molecular species already constructed.

Applying rule E.R (File "../kappa/reachability.ka", line 7, characters

6-43:):

the precondition is satisfied

Figure 6.7: Reachability analysis: one rule successfully applied.
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Views in initial state:

E(x[.])

--

Views in initial state:

R(x[.],c[.],cr[.],n[.])

Figure 6.8: Reachability analysis: extensional description of initial states.

Applying rule E.R (File "../kappa/reachability.ka", line 7, characters

6-43:):

the precondition is satisfied

rule E.R (File "../kappa/reachability.ka", line 7, characters

6-43:) is applied for the first time

Updating the views for E(x[])

E(x[x.R])

Updating the views for R(x[],c[],cr[],n[])

R(x[x.E],c[.],cr[.],n[.])

Figure 6.9: Reachability analysis: extensional description of the new patterns created when
applying a rule.
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Applying rule E.R (File "../kappa/reachability.ka", line 7, characters

6-43:):

the precondition is satisfied

rule E.R (File "../kappa/reachability.ka", line 7, characters

6-43:) is applied for the first time

(rule E/R (File "../kappa/reachability.ka", line

8, characters 6-53:)) should be investigated

(rule E/R (File "../kappa/reachability.ka", line

8, characters 6-53:)) should be investigated

Updating the views for E(x[])

E(x[x.R])

Updating the views for R(x[],c[],cr[],n[])

R(x[x.E],c[.],cr[.],n[.])

(rule E.R (File "../kappa/reachability.ka", line 7,

characters 6-43:)) should be investigated

Applying rule E/R (File "../kappa/reachability.ka", line 8, characters

6-53:):

the precondition is satisfied

Figure 6.10: Reachability analysis: discovering new patterns force the analysis to apply some
rules again, until reaching a �x-point.
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Now we describe the options that are available on this sub-tab.

The option --compute-reachability-analysis can be used to switch on/o� then reach-
ability analysis.

The option --enable-every-domain can be used to switch on every abstract domain,
whereas the option --disable-every-domain can be used to switch o� every abstract
domain.

The option --contact-map-domain impacts the way side-e�ects are handled with during
the analysis. In static mode, we consider that every bond that occurs syntactically in the
initial state, in the RHS of a rule, or in an introduction directive of a intervention, may be
released by side-e�ects. In dynamic mode, only the bond that has been encountered so far
during the analysis are considered.

The option --views-domain can be used to switch on/o� the views domains that combine
the non-relational analysis and the relational analysis.

The option --double-bonds-domain can be used to switch on/o� the analysis of potential
double bonds between proteins.

The option --site-across-bonds-domain can be used to switch on/o� the analysis of the
relations among the states of the sites in connected proteins.

It is possible to get more details about the computation of the analysis by tuning the
verbosity level of the view analysis:

� With the option --verbosity-level-for-reachability-analysis Mute, nothing is
displayed. Even the result of the analysis is omitted (eg. see Fig. 6.5).

� With the option --verbosity-level-for-reachability-analysis Low, only the re-
sult of the analysis is displayed (by default).

� With the option --verbosity-level-for-reachability-analysis Medium, the anal-
ysis also describes which rules are applied and in which order.

When trying to apply a rule, the analysis may detect that the rule cannot be applied
yet because the precondition is not satis�ed at the current state of the iteration
(eg. see Fig. 6.6). Otherwise, the analysis can apply the rule and update the state of
the iteration accordingly (eg. see Fig. 6.7).

� With the option --verbosity-level-for-reachability-analysis High, the anal-
ysis also describes which patterns are discovered.

In particular, at the beginning of the iteration, the analysis prompts the patterns
of interest that occur in the initial state (eg. see Fig. 6.8). Then, each time a rule
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is applied successfully, the analysis shows which new patterns have been discovered
(eg. see Fig. 6.9).

� When new patterns are discovered, then, it is necessary to apply again any rule that
may operate over these patterns. With the following option:

--verbosity-level-for-reachability-analysis Full,
the analysis also describes which rules are awaken by the discovery of a new pattern
(see Fig. 6.10).

The option --output-mode-for-reachability-analysis can be used to tune the output
of the analysis. The default mode is kappa. In mode raw, patterns of interest are displayed
extensionally. In mode english, properties of interest are explained in English. The op-
tion --use-natural-language can be used to switch on/o� the translation of properties
in natural language: when the option is disabled, each relationship is described in exten-
sion.

6.4 Local traces

Figure 6.11: KaSa graphical interface - sub-tab Trace analysis.

Trace analysis is a re�nement of reachability analysis that additionaly explains how one
agent can go from a given view to another one, following a path that we call a local trace.
Thus the set of the local traces for a given agent can be described as a transition system
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among the views for a given agent: in this transition system, the nodes are local views;
introduction arrows correspond to either initial states, or creation rules; transitions denote
a potential conformation change of an agent, from one local views to another one, due to
the application of a given rule.

We consider the following example:

1 /%agent: P(a1{u,p},a2{u,p},b1{u,p},b2{u,p},g)

2 %agent: K(x)

3

4 %init: 1 P()

5 %init: 1 K()

6

7 'a1+' P(a1{u}) -> P(a1{p}) @1

8 'b1+' P(a1{p},b1{u}) -> P(a1{p},b1{p}) @1

9 'a1-' P(a1{p},b1{u}) -> P(a1{u},b1{u}) @1

10 'b1-' P(b1{p},g[.]) -> P(b1{u},g) @1

11 'a2+' P(a2{u}) -> P(a2{p}) @1

12 'a2-' P(a2{p},g) -> P(a2{u},g) @1

13 'b2+' P(a2{p},b2{u}) -> P(a2{p},b2{p}) @1

14 'b2-' P(b2{p},g) -> P(b2{u},g) @1

15 'P.K' P(a1{p},a2{p},b1{p},b2{p},g[.]),K(x[.]) -> P(a1{p},a2{p}

,b1{p},b2{p},g[1]),K(x[1]) @1

16 'P/K' P(a1{p},a2{p},b1{p},b2{p},g[1]),K(x[1]) -> P(a1{p},a2{p}

,b1{p},b2{p},g),K(x[.]) @1

Typing the following command line:

KaSa protein2x2.ka --reset-all --compute-local-traces

will perform the trace analysis on the model protein2x2.ka, and produce two dot format
�les Agent_trace_K_x^.dot and Agent_trace.P.a1_.a2_.b1_.b2_.g^.dot. The output
repository can be changed thanks to the command line options --output-directory and
--output-local-trace-directory. Moreover, �le names are made of the pre�x Agent_trace,
followed by the kind of protein and the list of the sites of interest (the symbol `^' denotes
a binding state, and the symbol `_' an internal state).

The transition system that describes the local traces for the agents of kind P is descrided in
Figure 6.12. We notice that the nodes of this transition system are labelled with the states
of the sites of P . The internal state of a site x is denoted as x∼u (meaning that the site x
has state u, whereas the binding state of a site x is denoted as x!free, when the site is free,
and as x!K@x when the site x is bound to the site x of a given agent of kind K.

We notice that the transition system that is given in Fig. 6.12 contains too many nodes.
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Figure 6.12: Local traces for the protein2x2.ka model de�ned in Section 6.4.

We can coarse-grain this transition system thanks to the following option:

--use-macrotransitions-in-local-traces.

Typing the following command line:

KaSa protein2x2.ka --reset-all --compute-local-traces

--use-macrotransitions-in-local-traces

will perform the trace analysis on the model protein2x2.ka, and produce two dot format
�les Agent_trace_K_x^.dot and Agent_trace.P.a1_.a2_.b1_.b2_.g^.dot. The name of
the output repository can be changed thanks to the command line options --output-directory
and --output-local-trace-directory. This time, the �les describe a coarse-graining of
the corresponding transition systems.

For instance, the coarse-grained transition system for the local traces of the proteins of
kind P is given in Figure 6.13. This coarse-grained transition system is a compact implicit
encoding of the transition system in Figure 6.12. It is obtained by exploiting the fact that
locally, the behavior of the pair of states a1 and b1 is independent from the behavior of the
pair of states a2 and b2, until these four sites are phosphorylated, so that the site g can get
bound.

More formally, in that transition system, some states are microstates (in a microstate, the
state of each site is documented); some others are macrostates: (in a macrostate, the states
of only a subset of site is documented). Thus a macrostate v] can be seen intensionally as
a part of a local view, but also extensionnaly as the set γ(v]) of the local views they are a
subpart of. A microstate v can be described by any sequence (v]i ) of macrostates providing
that the intersection

⋂
γ(v]i ) of the extensional denotation γ(v]i ) of these macrostates v]i

is equal to the singleton {v}; moreover a transition between two microstates v and v′ can
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be described by any transition between one macro state v] and another one v′], provided
that there exists a sequence of macrostate (v]i ) such that the sequence (v], (v]i )) denotes the
microstate v and the sequence (v′], (v]i )) denotes the microstate v′.

Figure 6.13: Local traces for the protein2x2.ka model de�ned in Section 6.4.

Such coarse-grained transition system can be geometrically interpreted as a simplicial com-
plex [14].

As a microstate could be decomposed into several sequences of macrostates (including
the trivial sequence containing only the microstate itself), the system may jump sponta-
neously (by using a ε transition) from one representation to another representation. This
corresponds to the intersection between several simplexes in the corresponding simpli�cial
complex.

Although the semantics of a coarse-grainged transition system is fully de�ned by its la-
belled transitions, it is useful to annotate the graph by some information about the relation
between the denotation of each macrostate. By default, we use hypertlinks to relate each
macrostate v (including each microstate) to the set of its immediate subparts v′. In such a
hyperlink, v is connected via a dotted arrow, whereas each immediate subpart is connected
via a dashed arrow.

More options are available in expert mode, but they are not documented yet.

6.5 Contact map

The contact map of a model is an object that may help modelers checking the consistency
of the rule set they use. The contact map is statically computed and does not depend on
kinetic rates, nor the concentration of the bio-molecular species in initial state.

Typing the following command line:

KaSa abc.ka �reset-all �compute-contact-map
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Figure 6.14: KaSa graphical interface - sub-tab Contact map.

will produce a dot format �le named contact.dot. The name of the output �le and the
directory can be changed thanks to the command line options --output-contact-map and
--output-directory. The directory is assumed to exist. The �le will be overwritten if it
exists. All the options related to the computation of the contact map can be accessed on
the sub-tab Contact map of the graphical interface (see Fig. 6.14).

The contact map summarises the di�erent types of agent, their interface and the potential
bindings between sites. It is an over approximation, thus if the contact map indicates a
potential bond, it does not mean that it is always possible to reach a state in which two
sites of these kinds are bound, but if the contact map indicates no bond between two sites,
it means that it is NOT possible to reach a state in which two sites of these kinds are bound
together.

The contact map for the abc.ka model de�ned in Chapter 1.3 is given in Figure 6.15. On
this map, we notice that there are three kinds of agent, namely A, B, and C. Agents of kind
A have two sites x and c, that bear no internal state (they appear in yellow only), agents
of kind B have one site x, that bears no internal state (they appear in yellow only), and
agents of kind C have two sites x1 and x2 with both a binding state and an internal state
(they appear both in yellow and in green). We notice that when a site can bear both an
internal state and a binding state, they are considered as two di�erent sites in the contact
map. Additionally, the contact map indicates that sites x of the agents of kind A can be
bound to the site x of an agent of kind B and that sites c of the agents of kind A can be
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bound to the agents of kind C either on the site x1, or on the site x2.

Figure 6.15: Contact Map for the abc.ka model de�ned in Chapter 1.3.

There exist two accuracy levels for the contact map. At low level of accuracy, the inference
of the contact map is purely syntactic. The contact map summarizes the bonds that may
occur in the right hand side of rules and in the initial bio-molecular species. At high level
of accuracy, the rules that are detected dead by the reachability analysis are not taken into
account. Hence, only the bonds that may occur in the initial bio-molecular species, and in
the rules that have not been proven dead by the static analysis are reported. As a matter of
fact, the accuracy of the computation of the contact map at high level of resolution depends
on the parameterization of the reachability analysis.

Let us illustrate this on a simple example. The �le contact.ka has the following con-
tent:

1 /%agent: A(x{c,n},z)

2

3 A(x{c}[.]) <-> A(x{n}[.]) @ 1,1

4 A(x{c}[.]),A(x{c}[.]) -> A(x{c}[1]),A(x{c}[1]) @1

5 A(x{n}[.]),A(x{n}[.]) -> A(x{n}[1]),A(x{n}[1]) @1

6 A(x{c}[1]),A(x{c}[1]) <-> A(x{n}[1]),A(x{n}[1]) @1,1

7 A(z[.]),A(x{c}[1],z[.]),A(x{n}[1]) -> A(z[2]),A(x{n}[1],z[2]),A

(x{n}[1]) @1,1

8

9 %init: 10 A()

Firstly we compute the low resolution contact map by using the following instruction:

KaSa contact.ka --reset-all --compute-contact-map \

--contact-map-accuracy-level Low

We obtain the contact map that is drawed in Fig. 6.16. We notice that the analysis reports
a potential bond between the sites x of any two agents of type A and a potential bond
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between the sites z of any two agents of type A. This is because such bonds occur in the
right hand side of some rules of the model.

Figure 6.16: Low resolution contact map for the model contact.ka

Yet, bonds between two sites z occur only in the last rule which turns out to be dead.
Let us use the high resolution contact map to check this property. We use the following
instruction:

KaSa contact.ka --reset-all --compute-contact-map \

--contact-map-accuracy-level High

We obtain the contact map that is drawed in Fig. 6.17. We notice that the potential bond
between sites z of agents A has disappeared: the result of the analysis has been re�ned
thanks to the constraints infered by the reachability analysis.

Figure 6.17: High resolution contact map for the model contact.ka

The proof that, the last rule of the model in the �le contact.ka is dead relies on the
abstract domain, that captures the potential relationships between states of sites in the
pairs of agents, that are connected by a bond. Let us compute the high resolution contact
map without this abstract domain:

KaSa contact.ka --reset-all --compute-contact-map \

--contact-map-accuracy-level High --no-sites-across-bonds-domain

We obtain the contact map that is given in Fig. 6.18. The analysis has failed in proving
that the last rule of the model is dead. As a matter of fact, the potential bond between
sites z of agents A has not disappeared.

The contact map may be re�ned with information about polymers. When the commmand
line option �compute-potential-cycles is used, KaSa computes a superset of the bonds
the number of occurences of which may not be uniformly bounded in paths within bio-
molecular species. These bonds are then displayed in red in the contact map.
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Figure 6.18: High resolution contact map for the model contact.ka when the abstract
domain for the relations among the states of sites in pairs of bound agents is disabled.

The computation of this subset is based on Tarjan's algorithm for the decomposition of a
graph in strongly connected components [22]. For this, we consider the graph of the potential
succesion of bonds in bio-molecular species. The nodes of this graph are the oriented version
of the potential bonds in the contact map (each potential bond is considered twice). Then
there is an edge between two oriented bonds if the target of the �rst bond and the source
of the second bond have the same agent type but di�erent site names. Hence each edge is
associated with a graph that is obtained by merging the graph associated to the source and
the target of this edge, that is to say that each edge is associated with a graph made of
three agents and two bonds (e.g. see Fig. 6.19). We can notice that every path that may be
repeated in bio-molecular species necessarily forms a cycle in this graph. The computation
of all the elementary cycles in graph may be exponentially costly. Instead, we compute the
strongly connected components which can be done in linear time (with respect to the sum
among the number of nodes and the number of edges in the graph). The computation of
the strongly connected components is enough, since an edge belongs to a cycle if and only
if it belongs to a non trivial strongly connected component.

The �le scc_abc.ka has the following content:

1 /

2 %agent: A(x,y)

3 %agent: B(x,y)

4 %agent: C(x,y)

5

6 A(x[.]),B(y[.]) -> A(x[1]),B(y[1]) @ 1

7 B(x[.]),C(y[.]) -> B(x[1]),C(y[1]) @ 1

8 C(x[.]),A(y[.]) -> C(x[1]),A(y[1]) @ 1

9

10 %init: 10 A()

11 %init: 10 B()

12 %init: 10 C()

In this example, arbitrary long chains and arbitrary long rings of agents may be formed
(the site x of each A is either free or bound to the site y of a B; the site x of each B is
either free or bound to the site y of a C; and the site x of each C is either free or bound to
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the site y of a A).

The graph that is associated to this model is given in Fig. 6.19.

Figure 6.19: The graph about potential succession of bonds for the model scc_abc.ka. Each
bond in the model is encoded as a node. Each edge in the graph denotes a site-graph made
of three agents.

Typing the following command line:

KaSa scc_abc.ka --reset-all --compute-potential-cycles

will generate the contact map that is given Fig. 6.20

Figure 6.20: The contact map for the model scc_abc.ka with information about potential
polymers. Every bond is drawed in red, since the analysis cannot bound their number of
occurrences in paths in reachable bio-molecular compounds.

The accuracy of the detection of polymers may be tuned in two ways. Firstly, it is parame-
terized of the accuracy of the contact map. Secondly, it may be re�ned by the reachability
analysis in order to discard the couple of bonds that cannot be present successively in
reachable bio-molecular compounds.

72



CHAPTER 6. THE KASA STATIC ANALYSER

K
a

S
p mipa

The �le scc_relations.ka contains the following model:

1 /%agent: A(x,y)

2 %agent: B(x,y)

3

4 A(x[.],y[.]),B(y[.]) -> A(x[.],y[1]),B(y[1]) @1

5 A(x[.],y[.]),B(x[.]) -> A(x[1],y[.]),B(x[1]) @1

6

7 %init: 10 A()

8 %init: 10 B()

In this model, the sites x and y of a given instance of the agent A cannot be bound
simultaneously. This prevents the formation of polymers.

By default, the detection of polymers is using the result of the reachability analysis. Thus,
the following instruction:

KaSa --reset-all --compute-potential-cycles scc_relations.ka

produces the contact map that is drawed in Fig. 6.21. By default, the detection of polymers
has used the result of the reachability analysis: since the bonds on the site x and y of each
instance of the agent A are mutually exclusive, no polymer may be formed.

Figure 6.21: The contact map for the model scc_relations.ka with information about
potential polymers. Since the bonds on the sites of A are mutually exclusive, no polymer
may be formed. This is infered by the analysis (no bond is colored in red).

The re�nement by the result of the reachability analysis can be disable by using the following
instruction:

KaSa --reset-all --compute-potential-cycles \
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--polymer-detection-accuracy-level Low scc_relations.ka

In this case, KaSa produces the contact map that is given in Fig. 6.22. The analysis does
know that the bonds of the sites of each agent of type A are mutually exclusive. The bonds
are drawed in red to warn about the potential formation of polymers of the model (this is
a false alarm).

Figure 6.22: The contact map for the model scc_relations.ka with information about
potential polymers. Since the bonds on the sites of A are mutually exclusive, no polymer
may be formed. This is infered by the analysis (no bond is colored in red).

The detection of polymer at high resolution also depends on the accuracy of the reachability
analysis. The �le scc_dimer.ka contains the following model:

1 /%agent: R(x,y,z)

2

3 R(x[.]),R(x[.]) -> R(x[1]),R(x[1]) @1

4 R(x[1],y[.],z[.]),R(x[1],y[.],z[.]) -> R(x[1],y[2],z[.]),R(x[1]

,y[.],z[2]) @1

5

6 %init: 10 R()

In this model, two agents of type R may connect their sites x together. Then, two agents
connected via their sites x may establish an asymetric bond between the site y of the �rst
one and the site z of the second one. As a consequence, whenever an agent of type R has
several sites bound, these sites are necessarily bound to the same instance of the agent R.
Thus, there can be no polymer.

At low resolution, the detection of polymer fails in exploiting this property, and warns
about potential polymers. Indeed, the following instruction:
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KaSa --reset-all --compute-potential-cycles scc_dimer.ka \

--polymer-detection-accuracy-level Low

produces the contact map that is drawed in Fig. 6.23.

Figure 6.23: The contact map for the model scc_dimer.ka with information about potential
polymers at low resolution. The analysis fails in proving the lack of polymers (bonds are
colored in red).

At high level of resolution, the analysis for the detection of potential polymers successfully
prove the lack of polymers. The following instruction:

KaSa --reset-all --compute-potential-cycles scc_dimer.ka

produces the contact map that is given in Fig. 6.24. The analysis has successfully proven
the lack of polymers (no bond is colored in red).

Figure 6.24: The contact map for the model scc_dimer.ka with information about potential
polymers at high resolution. The analysis successfully proves the lack of polymers (no bond
is colored in red).

In order to illustrate that the accuracy of the analysis relies in this example on the capability
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for the analysis to exploit properties of double bonds. We disable the double bond domain.
The following instruction:

KaSa --reset-all --compute-potential-cycles scc_dimer.ka \

--no-double-bonds-domain

produces the contact map that is given in Fig. 6.25. Without the capability to express and
prove that whenever an agent of type R is bound twice, it is necessarily bound twice to the
same agent instance. The analysis fails in proving the absence of polymer. Thus, it warns
about potential polymers, by drawing the edges in red.

Figure 6.25: The contact map for the model scc_dimer.ka with information about potential
polymers at high resolution but without the analysis of double bonds. The analysis cannot
infer the fact that whenever two sites of an agent R are bound, they are necessarily bound
to the same instance of an agent. Thus, it cannot infer the lack of polymers. (bonds are
colored in red)

6.6 In�uence map

The in�uence map of a model is an object that may help modelers checking the consistency
of the rule set they use.

Typing the following command line:

KaSa abc.ka �reset-all �compute-influence-map

will produce a dot format �le named influence.dot. The name of the output �le and the
directory can be changed thanks to the command line options --output-influence-map

and --output-directory. The directory is assumed to exist. The �le will be overwritten if
it exists. All the options related to the computation of the in�uence map can be accessed
on the sub-tab Influence map of the graphical interface (see Fig. 6.26). Two formats are
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available for the output: in�uence map can be generated in DOT or HTML format. The
format can be choosen thanks to the command line option --influence-map-format.

Figure 6.26: KaSa graphical interface - sub-tab Influence map.

Unlike the dynamic in�uence network, the in�uence map is statically computed and does
not depend on kinetic rates nor the quantities in initial conditions. It describes how rules
may potentially in�uence each other during a simulation. KaSa will produce a dot format
�le containing the in�uence relation over all rules and observables of the model. The pro-
duced graph visualised using a circular rendering1 is given in Figure 6.27. Observables are
represented as circular nodes and rules as rectangular nodes. The labels of the nodes are
either the label of the rule or of the observable (if available), otherwise they are made of
a unique identi�er allocated by KaSa followed by the Kappa de�nition of the rule/observ-
able. Edges are decorated with the list of embeddings (separated by a semi-colon) allowing
the identi�cation of agents in both rules' right hand sides/left hand sides. More precisely,
for positive in�uences, the notation [i → j] denotes a pair of embeddings from the agent
number i of the origin's right hand side and from the agent number j of the target's left
hand side and the notation [i? → j] denotes a pair of embeddings from an agent attached
to the agent number i of the origin's left hand side, which have been freed by side e�ect and
from the agent number j of the target's left hand side; for negative in�uences, the notation
[i → j] denotes a pair of embeddings from the agent number i of the origin's left hand
side and from the agent number j of the target's left hand side and the notation [i? → j]
denotes a pair of embeddings from an agent attached to the agent number i of the origin's

1One may use for instance the circo program that is part of the graphviz suite.
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left hand side, which have been freed by side e�ect and from the agent number j of the
target's left hand side; Observables have no in�uence, but they can be in�uenced by rules,
if the rule can increase or decrease their value.

More formally, consider the rules r : L→ R and s : L′ → R′. One wishes to know whether
it is possible that the application of rule r over a graph G creates a new instance of rule s
(which is called a positive in�uence and that is described by green arrows in the in�uence
map), or destroy a previous instance of rule s (which is called negative in�uence and that
is described by red arrows in the in�uence map). In Fig. 6.28, we illustrate the construction
of positive in�uences due to overlap of the left hand side of a rule and the right hand side
of another rule on some sites that are modi�ed by the former one.

The current implementation has the following limitations:

� Currently, only observables that are de�ned as patterns are taken into account.

� Not atomic observables which are de�ned as algebraic expressions are not taken into
account yet. The observables are ignored.

� The in�uence map does not take into account indirect in�uences due to interventions
(which could arises when the application of a rule triggers a intervention which would
create some agents or increase/decrease the value of some variables).

� Token are not taken into yet. They are currently ignored.

� Positive/negative in�uence of time is not taken into account either.

Lastly, KaSa computes an over-approximation of the in�uence map. They may show an
in�uence despite the fact that there can be no actual one. But if it shows no in�uence it
means that either there are NO such in�uence, or that we are in a case that is not covered
yet as itemised previously.

Three levels of precision are available: Low, Medium, and High. The level of precision can be
changed thanks to the command line option --influence-map-accuracy-level.

At low precision, an in�uence is detected if one rule change at least one bit of information
(the internal state of a site, the binding state of a site), in favor/defavor of the application
of another rule. This abstraction level ignores completely the context of application of rules,
and just focuses on modi�cations.

At medium precision, the analysis checks that both rules have a common context.

At high precision, the analysis checks that such common context is realizable taking into
account the species that have been declared as initial states and the potential introduction
of species in interventions. High resolution in�uence is parameterized by the accuracy of
the reachability analysis. It may happen that a given context is infeasible, but that this is
not detected by the analysis.
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Figure 6.27: The in�uence map of the abc.ka model de�ned in Chapter 1.3. Edge labels
denote embeddings with the convention that the notation [i → j], in a positive in�uence,
denotes a pair of embeddings from the agent number i of the origin's right hand side and
from the agent number j of the target's left hand side; the notation [i → j], in negative
in�uence, denotes a pair of embeddings from the agent number i of the origin's left hand
side and from the agent number j of the target's left hand side; the notation [i? → j],
whatever the in�uence is positive of negative, denotes a pair of embeddings from an agent
attached to the agent number i of the origin's left hand side, which have been freed by side
e�ect and from the agent number j of the target's left hand side.

79



6.6. INFLUENCE MAP

K
a

S
p mipa

Figure 6.28: Computation of the in�uence of the top rule on the rule below: the right hand
side of the �rst rule embeds in a common term with the left hand side of the second rule.
It results that the �rst rule has a positive in�uence on the second.

Let us illustrate these three levels of accuracy by a case study.

We consider the following model.

1 / %agent: A(w~u~p,x~u~p,y~u~p,z~u~p)

2

3 A(x~u) -> A(x~p) @1

4 A(x~p,y~u) -> A(x~p,y~p) @1

5 A(y~p,z~u) -> A(y~p,z~p) @1

6 A(x~u,z~p,w~u) -> A(x~u,z~p,w~p) @1

7 A(x~u,z~u) -> A(x~u,z~p) @1

8 A(x~p,w~p) -> A(x~p,w~u) @1

9

10 %init: 10 A()

The low resolution in�uence map is given in Fig. 6.29. There is a positive arc (in green)
from a rule to another one whenever the application of the former pushes at least one bit
of information towards the application of the later; whereas there is a negative arc (in red)
from a rule to another one whenever the former pulls at least one bit of information away
from the application of the later.

The medium resolution in�uence map is given in Fig. 6.30. Every arc corresponding to
incompatible contexts has been removed. In our example, these are the arcs from the rule
3 and the rule 5 (in both direction). Despite the fact that the rule 3 may phosphorylate the
site w which is required to apply the rule 5, no instance of the rule 5 may be applied thanks
to the application of the rule 3 right after, because after the application of the rule 3 the
state of the site x is necessarily unphosphorylated, whereas it has to be phosphorylated for
the rule 5 to be applied. The same kind of explanation holds to remove the arc from the
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rule 5 to the rule 3.

There are some structural invariants in these models. We give in Fig. 6.32 the log of the
computation of the high resolution contact map. It turns out that whenever the site y of
an agent is phosphorylated, then the site x of this protein is phosphorylated as well. Thus
we can deduce that the positive arc from the rules 2 and 3, and the negative arcs from the
rules 2 and 4 (in both direction) are false positive unless we change the set of the species in
the initial state or in the interventions. Thus we obtain the high resolution in�uence map
given in Fig. 6.31.

Figure 6.29: Low resolution in�uence map.
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Figure 6.30: Medium resolution in�uence map.

Figure 6.31: High resolution in�uence map.
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Kappa Static Analyzer (v4.0) (without Tk interface)

Analysis launched at 2018/03/30 09:55:30 (GMT-4) on kapput

Parsing ../kappa/influence.ka...

done

Compiling...

Reachability analysis...

------------------------------------------------------------

every rule may be applied

------------------------------------------------------------

every agent may occur in the model

------------------------------------------------------------

* Non relational properties:

------------------------------------------------------------

A() => [ A(x{u}[.]) v A(x{p}[.]) ]

A() => [ A(w{u}[.]) v A(w{p}[.]) ]

A() => [ A(y{u}[.]) v A(y{p}[.]) ]

A() => [ A(z{u}[.]) v A(z{p}[.]) ]

------------------------------------------------------------

* Relational properties:

------------------------------------------------------------

A(w{p}[.]) => A(w{p}[.],z{p}[.])

A(y{p}[.]) => A(x{p}[.],y{p}[.])

------------------------------------------------------------

* Properties in connected agents

------------------------------------------------------------

------------------------------------------------------------

* Properties of pairs of bonds

------------------------------------------------------------

execution finished without any exception

Figure 6.32: Log of the reachability analysis.
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Chapter 7

The KaDE ODEs generator

7.1 General usage

From a terminal window, KaDE can be invoked by typing the following command line:

$ KaDE file_1 ... file_n [option]

where file_i are the input Kappa �les containing the rules, initial conditions and observ-
ables (see Chapter 2).

All the options are summarised as follows:

General options

--help Verbose help

-h Short help

--version Show version number

--gui GUI to select

--(no-)expert Expert mode (more options)

Data set

-(no-)initial <float> (default: 0.000000)

Min time of simulation (arbitrary time unit)

-(no-)l <float> (default: 1.000000)

Limit of the simulation

-(no-)p <float> (default: 0.010000)

plot period: time interval between points in plot (default: 1.0)

-d <name> (default: .)

Specifies directory name where output file(s) should be stored
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--output <value>

Prefix for file name output

Output

--(no-)output-plot <name> (default data.csv)

file name for data output

--ode-backend dotnet | maple | mathematica | matlab | octave | sbml

(default: octave)

Select the backend format

-mode batch | interactive

(default: interactive)

either "batch" to never ask anything to the user or "interactive" to

ask something before doing anything

--(no-)constant-propagation (default: disabled)

propagate constants

--(no-)show-reactions (default: enabled)

Annotate ODEs by the corresponding chemical reactions

--(no-)smash-reactions (default: disabled)

Gather identical reactions in the ODEs

-d <name> (default: .)

Specifies directory name where output file(s) should be stored

--output <value>

Prefix for file name output

Semantics

--(no-)output-plot <name> (default data.csv)

file name for data output

--rule-rate-convention KaSim | Divide_by_nbr_of_autos_in_lhs | Biochemist

(default: Divide_by_nbr_of_autos_in_lhs)

convention for dividing constant rates (for rules)

--reaction-rate-convention KaSim | Divide_by_nbr_of_autos_in_lhs |

Biochemist

(default: Divide_by_nbr_of_autos_in_lhs)

convention for dividing constant rates (for reactions)

--count Embeddings | Occurrences

(default: Embeddings)

tune whether we cound in embeddings or in occurrences

--(no-)truncate <int> (default: disabled)

truncate the network by discarding species with size greater than the

argument

--with-symmetries None | Backward | Forward
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(default: None)

Tune which kind of bisimulation is used to reduce the set of species

-syntax 3 | v3 | V3 | 4 | v4 | V4

(default: 4)

Use explicit notation for free site

-d <name> (default: .)

Specifies directory name where output file(s) should be stored

--output <value>

Prefix for file name output

Integration settings

-(no-)initial <float> (default: 0.000000)

Min time of simulation (arbitrary time unit)

-(no-)l <float> (default: 1.000000)

Limit of the simulation

--(no-)output-plot <name> (default data.csv)

file name for data output

--(no-)smash-reactions (default: disabled)

Gather identical reactions in the ODEs

-(no-)p <float> (default: 0.010000)

plot period: time interval between points in plot (default: 1.0)

--(no-)compute-jacobian (default: enabled)

Enable/disable the computation of the Jacobian of the ODEs

(not

available yet)

--(no-)nonnegative (default: disabled)

Enable/disable the correction of negative concentrations in stiff ODE

systems

--initial-step <float> (default 0.000010)

Initial integration step

--max-step <float> (default 0.020000)

Maximum integration step

--relative-tolerance <float> (default 0.001000)

tolerance to relative rounding errors

--absolute-tolerance <float> (default 0.001000)

tolerance to absolute rounding errors

-d <name> (default: .)

Specifies directory name where output file(s) should be stored

--output <value>

Prefix for file name output
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Model reduction

--with-symmetries None | Backward | Forward

(default: None)

Tune which kind of bisimulation is used to reduce the set of species

--(no-)show-symmetries (default: disabled)

Display the equivalence relations over the sites

-d <name> (default: .)

Specifies directory name where output file(s) should be stored

--output <value>

Prefix for file name output

Static analysis

--(no-)views-domain (default: enabled)

Enable/disable views analysis when detecting symmetric sites

--(no-)double-bonds-domain (default: enabled)

Enable/disable double bonds analysis when detecting symmetric sites

--(no-)site-across-bonds-domain (default: enabled)

Enable/disable the analysis of the relation amond the states of sites

in

connected agents

-d <name> (default: .)

Specifies directory name where output file(s) should be stored

--output <value>

Prefix for file name output

Debug mode

--(no-)show-time-advance (default: disabled)

Display time advance during numerical integration

--(no-)debug (default: disabled)

Enable debug mode

--(no-)print-efficiency (default: disabled)

prompt CPU time and various datas

--(no-)backtrace (default: disabled)

Backtracing exceptions

--(no-)gluttony (default: disabled)

Lower gc activity for a faster but memory intensive simulation

-mode batch | interactive

(default: interactive)

either "batch" to never ask anything to the user or "interactive" to

ask something before doing anything

-d <name> (default: .)
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Specifies directory name where output file(s) should be stored

--output <value>

Prefix for file name output

(78 options)

Orders in option matter, since they can be used to toggle on/o� some functionalities or
to assign a value to some environment variables. The options are interpreted from left to
right.

7.2 Graphical interface

7.2.1 Launching the interface

The graphical interface can be launched by typing the following command line:

$ KaDE

without any option.

Figure 7.1: KaDE graphical interface - sub-tab Data set.
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7.2.2 The areas of interest

There are �ve di�erent areas of importance in the graphical interface:

1. On the top left of the window, a button allows for the selection between the Normal
and the Expert mode (other modes may be available if activated at compilation). In
expert mode, more options are available in the graphical interface.

2. On the top center/right, some button allows for the selection of the tab. There
are currently seven sub-tabs available: Data set, Output, Semantics, Integration
settings, Model reduction, Static analysis, Debug mode. The last two tabs are
availanle only in expert mode (which can be selected on the top-left of the window).

3. Center: The options of the selected sub-tab are displayed and can be tuned.

Contextual help is provided when the mouse is hovered over an element. The interface
will store the options that are checked or �lled and the order in which they have been
selected. When launched, the analysis interprets these options in the order they have
been entered. Some options appear in several sub-tabs. They denote the same option
and share the same value.

4. File selector: The �le selector can be used to upload as many Kappa �les as desired.
The button 'Clear' can be used to reset the selection of �les.

5. Bottom: Some buttons are available. The button 'Quit' can be used to leave the
interface. The button 'Reset to default' tunes all the options to their default value.
The button 'Import options' can be used to restore the value of the options as saved
during a previous session of the graphical interfaces. The button 'Save options' can
be used to save the value of the options for a further session. The button 'Launch
analyze' launch KaDE with the current options.

Importantly, options are saved automatically under various occasions. Thus, it is
possible to restore the value of the options before the last reset, before the last quit,
or before the last analysis.

Two �elds de�ne the repository and the name of the output:

� The �eld -d sets the repository where output �le are written. KaDE will create this
repository, if it does not exist.

� The �eld --output sets the name of the output �le. The following extension will
be added automatically according to the choice of the backend format: ".net" in
DOTNET format, ".mws" in Maple, ".nb" in Mathematica, ".m" in Matlab and
Octave, and ".xml" in SBML. When the output �le already exists, KaDE will ask
for con�rmation before overwritting it, unless the tool is set in batch mode (e.g. see
Sect. 7.2.6).
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Both �elds may be modi�ed from every sub-tab.

7.2.3 The sub-tab Data set

The sub-tab Data set (see Fig. 7.1) contains the options to tune the time range for the
numerical integration and the frequency of sample plots. These �elds are used only in
Maple, Mathematica, Matlab, and Octave backend formats. They are ignored in SBML
and DOTNET backend formats.

The following options are available:

� The �eld --initial de�nes the starting date of the simulation.

� The �eld -l de�nes the �nal date of the simulation.

� The �eld -p de�nes the time interval between consecutive plots.

7.2.4 The sub-tab Output

Figure 7.2: KaDE graphical interface - sub-tab Output.

The sub-tab Output (see Fig. 7.2) contains the names of the output �les and their for-
mat.

The following options are available:
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� The �eld --ode-backend allows for the choice among the di�erent backend formats
among DOTNET, Maple, Mathematica, Matlab, Octave and SBML.

� The �eld --output-plot sets the name of the �le where the plots will be dumped
when it applies. Only the Maple, Mathematica, Matlab and Octave dump plots. The
option is ignored in the other backend formats.

� The option --(no)-constant-propagation switches on/o� constant propagation.

� The option --(no)-show-reactions annotates each expression in the output �le,
with the Kappa rule and the reaction that have generated this contribution.

� The option --(no)-smash-reactions identi�es multiple occurrences of a same reac-
tion in the reaction network, and sums up their contribution into a single reaction.

7.2.5 The sub-tab Integration settings

Figure 7.3: KaDE graphical interface - sub-tab Integration settings.

The sub-tab Integration settings (see Fig. 7.3) contains the parameters to guide the nu-
merical integration engine. Except the option --smash-reaction, these options are ignored
in the SBML and the DOTNET backend format.

The following options are available:
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� The option --compute-jacobian switches on the computation of the Jacobian of the
system of ordinary di�erential equations. The Jacobian is computed symbolically. It
speeds up the numerical integration. The computation of the Jacobian is implemented
only in two backend formats: Matlab and Octave. Other formats will ignore this
option.

� The option --non-negative can be used to force concentration to have a non negative
value during numerical integration. The computation of the Jacobian is implemented
only in two backend formats: Matlab and Octave. Other formats will ignore this
option.

� The �eld --initial-step tunes the initial integration step. This �eld is used only
in Maple, Mathematica, Matlab, and Octave backend formats. It is ignored in SBML
and DOTNET backend formats.

� The �eld --max-step tunes the maximal size of integration steps. This �eld is used
only in Maple, Mathematica, Matlab, and Octave backend formats. It is ignored in
SBML and DOTNET backend formats.

� The �eld --relative-tolerance de�nes the relative numerical error tolerance in
integration engines. This means that numerical errors cannot go beyond a bound that
is proportional to the concentration of the bio-molecular species. This �eld sets the
value of the proportionality coe�cient. This �eld is used only in Maple, Mathematica,
Matlab, and Octave backend formats. It is ignored in SBML and DOTNET backend
formats.

� The �eld --absolute-tolerance de�nes the absolute numerical error tolerance in
integration engines. This means that numerical errors cannot go beyond the value of
that �eld. This �eld is used only in Maple, Mathematica, Matlab, and Octave backend
formats. It is ignored in SBML and DOTNET backend formats.

� The �eld --output-plot de�ned the csv �le where the values of the sample plots
will be printed. This �eld is used only in Maple, Mathematica, Matlab, and Octave
backend formats. It is ignored in SBML and DOTNET backend formats.

� The option --smash-reaction gathers isomorphic reactions before generating the
network or the system of ordinary di�erential equations (while summing their rates).
This option is used in every backend format.

� The �eld --initial de�nes the starting date of the simulation. This �eld is used only
in Maple, Mathematica, Matlab, and Octave backend formats. It is ignored in SBML
and DOTNET backend formats.

� The �eld -l de�nes the �nal date of the simulation. This �eld is used only in Maple,
Mathematica, Matlab, and Octave backend formats. It is ignored in SBML and DOT-

93



7.2. GRAPHICAL INTERFACE

K
a

S
p mipa

NET backend formats.

� The �eld -p de�nes the time interval between two plots. This �eld is used only in
Maple, Mathematica, Matlab, and Octave backend formats. It is ignored in SBML
and DOTNET backend formats.

7.2.6 The sub-tab Debug

In expert mode, the last sub-tab provides options to tune the amount of debugging infor-
mation that is displayed.

Figure 7.4: KaDE graphical interface - sub-tab 6_debug_mode.

The following options are available:

� The option --(no)-show-time-advance includes some instructions in the output �le,
so as to track the progress during numerical integration in the Maple, Mathematica,
Matlab, and Octave backend. This option is ignored in the other backend format.

� The �eld --(no)-print-efficiency provides some information about the CPU time
that has been used to generate the set of reactions and about the size of the initial
and reduced models.

� The option --(no)-backtrace provides more/less information about internal excep-
tions.
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k

Figure 7.5: Proteins K and S may bind.

kp

Figure 7.6: The protein K may activate the protein S.

� The option --(no)-glutonny tunes the parameters of the garbage collector.

� The �eld -mode allows for the choice among batch and interactive mode. In interactive
mode, KaDE always asks permission to overwrite �les. In batch mode, KaDE may
overwrite output �les, without permission.

7.3 Di�erential semantics

7.3.1 From rules to reactions

In Kappa, rules may be more and less re�ned [6, 8], according to their preconditions.

Consider the following two rules:

1 /'bind' K(r),S(l) -> K(r!1),S(l!1) @k

2 'phos' K(r!1),S(l!1,r~u) -> K(r!1),S(l!1,r~p) @kp

The �rst rule (e.g. see Fig. 7.5) stipulates that proteins of type K and proteins of type S may
bind via their respective right and left sites. The second rule (e.g. see Fig. 7.6) stipulates
that a protein S bound to a protein K may be activated (on its right site).

It is worth noticing that the �rst rule may be applied in two di�erent contexts, according
to whether or not the right site of the protein on the right is already phosphorylated, or
not. It follows the re�nement that is depicted in Fig. 7.7.

In general, each rule may be re�ned into a (potentially in�nite) multi-set of reactions over
fully speci�ed site-graphs. Each connected component in a reaction denotes an instance of
a bio-molecular species. For every bio-molecular species S, a reaction R1 + . . .+Rm→P1 +
. . .+ Pn gives the following contribution to the derivative of the concentration of S,

d[S]

dt

+
=

∑
r

γ(r) · [r,R] ·∆(R,S) · [R1] · . . . · [Rm]

where:
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Figure 7.7: From rules to reactions. The rule in Fig. 7.5 is re�ned into two reactions according
to whether the site r of the protein S is phosphorylated or not.

1. [r,R] is the number of di�erent ways to induce the reaction R from the rule r;

2. γ(r) is the corrected rate of the rule r (a fraction of the rate of the rule r is taken
according to a choice among three conventions de�ning how automorphisms are taken
into account);

3. and ∆(R,S) is the di�erence between the number of occurrences of the species S in
the sequence P1, . . . , Pn and the one in the sequence R1, . . . , Rm.

This de�nes the ODE semantics of Kappa models.

7.3.2 Semantics convention

Rate constant conventions

The options in the sub-tab Semantics allow for the choice among several possibilities for
the meaning of the ODEs variables and for the meaning of the rate constants.

KaDE corrects the rate constant of each according to a convention about the number of
automorphisms in this rule. KaDE o�ers the choice among three conventions:

1. with the convention KaSim, there is no correction, as it is done in the simulator;

2. with the convention Divide_by_the_number_of_autos_in_lhs, each rate constant is
divided by the number of automorphisms in the lhs of the rule, as it was done in
previous version of the simulator;

3. with the convention Biochemist, each rate constant is divided by the number of the
automorphisms in the lhs, that also induces an automorphism over the agents that
are preserved in the rhs of the rule (more formally, an automorphism in the lhs of a
rule is taken into account only if its restriction to the part that is common to the lhs
and the rhs of the rule, can be extended to an automorphism of the rhs of the rule).
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Figure 7.8: KaDE graphical interface - sub-tab 2_semantics.

In particular, only automorphisms that map degraded proteins, if any, to degraded
proteins, are considered. Indeed this convention account for the automorphisms of the
left hand side of rules which identi�es the agents that cannot be ditinguished from a
mechanistic point of view.

Consider the following rule:

1 /A(u,r~u),A(u,r~u),A(u,r~u),A(u,r~u) -> A(u!1,r~u),A(u!1,r~u),A

(u,r~u),A(u,r~p) @ 'k'

which is depicted as follows:

k

with the �rst convention (that is the one of the simulator), rates of rules are not corrected,
hence the e�ective rate of this rule is k; with the second one, rates are divided by the
number of automorphisms in the left hand side of rules (here 4! that is to say 24); the third
convention accounts only for the permutations among the agents that are undistinguishable
from a mechanistic point of view: rates are divided by the number of automorphisms in the
left hand side of rules that also induce automorphisms of the right hand side (here 2).
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Figure 7.9: The rule A(x),A(x) -> A(x!1),A(x!1) may bind two agents that are already
in the same connected component, only if a second rate constant is given explictly.

Ambiguous molecularity

The di�erential semantics is de�ned as the limit of the stochastic semantics when the
temperature diverges toward the in�nity. Thus a rate constant stands indeed for a function
mapping the temperature to an e�ective rate constant the expression of which depends on
the arity of the reaction. Even if the unary rate and the binary rate of a rule may be equal
for a given temperature, it is never the case at all temperatures. Another insight is that rate
constants for a unary reaction and rate constants for a binary reaction are not expressed
in the same physical units.

To account for this, KaDE never applies a binary rule in a unary context, unless two rate
constants have been provided explicitly.

Let us give an example. We consider the agent type A with two binding sites x and y. We
assume that two sites x (in di�erent As) may be bound pair-wise and that two sites y (in
di�erent As) may be bound pair-wise. Both following rules:

1 /A(x),A(x) -> A(x!1),A(x!1) @ 1

2 A(x),A(x) -> A(x!1),A(x!1) @ 1{0}

will behave the same: they both apply to the following mixture

1 /A(x,y),A(x,y)

but not to the following one:

1 /A(x,y!2),A(x,y!2)

So as to allow the rule to form a bond within the two agents of the dimer, the following
rule:

1 /A(x),A(x) -> A(x!1),A(x!1) @ 1{1}

shall be used instead.
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This way, when a rule is given with one rate constant only, the connected components in
its left hand side have to be re�ned into pair-wisely disjoint bio-molecular species. When
a rule is binary and when it is given with two rate constants, it may be apply in a unary
context (which consists in embedding its left hand side into a single bio-molecular species)
with the second rate constant, or in a binary context (which consists in embedding each
connected component in its left hand side into two disjoint bio-molecular species (which
may be two isomorphic copies of the same species)).

Embeddings VS occurrences

In a Kappa �le, a pattern may denote two di�erent quantities. At initialisation, a pattern
denotes an occurence of a bio-molecular species. In an algebraic expression (which includes
functional rates, stoichiometric coe�cients for tokens, observables), a pattern denotes a
number of embeddings from this pattern to a mixture.

Formally, we de�ne the number (resp. the concentration) of embeddings from a pattern to a
mixture (resp. to a concentration function) as the sum, for each bio-molecular species, of the
number of occurrences (resp. concentration) of that bio-molecular species and the number
of occurrences of the pattern in that bio-molecular species. We also de�ne the number
(resp. the concentration) of occurrences of a pattern in a mixture (resp. in a concentration
function) as the quotient between the number (resp. the concentration) of embeddings
from this pattern to a mixture (resp. to a concentration function) and the number of
automorphisms in this pattern.

To illustrate this, we assume that the �le occ.ka contains the following code:

1 /%agent: A(x)

2 %agent: D()

3

4 %init: 10 A(x[1]),A(x[1])

5

6 . -> D() @1

7

8 %obs: 'dimer' |A(x[1]),A(x[1])|

We use the following command line to get the value of the observable:

$ KaSim occ.ka -l 1 -p 0.5 -o occ.csv

The �le csv contains the following data set:

# Output of 'KaSim ' '-mode ' 'batch ' '-i' '../kappa/occ.ka' '-l'

'1' '-p' '0.5' '-d' '../ generated_img/' '-o' 'occ.csv ' -

seed 564400989
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# "uuid" : "413335791"

"[T]","dimer"

0.,20

0.5,20

1.,20

We notice that KaSim indicates 20 for the quantities of dimers. This accounts for the fact
that each dimer satis�es two automorphisms.

The command-line option --count [Embeddings | Occurrences] changes the meaning of
the variables that occur in the di�erential equations. The choice has no impact on the
quantities that are plot. Introduced bio-molecular species are always introduced in concen-
tration of occurrences, and patterns in algebraic expressions always denote concentration
of embeddings. It just changes the meaning of the variables that are used internally in the
di�erential equations.

Polymers

In case of polymerisation, the size of the bio-molecular species is potentially unbounded
and there may be an in�nite amount of di�erential equations (this is the case even if there
is no agent synthesis, since the initial state is given in concentration, and not in occurrence
number). In such a case, KaDE will not terminate. Yet it is possible to truncate the system
of ordinary di�erential equations: the command-line option --truncate speci�es an upper
bound to the number of agents in the bio-molecular species. Each reaction that would
involve a larger bio-molecular species is discarded.

For instance, we can consider the model poly.ka that is de�ned as follows:

1 / %agent: A(l,r)

2 %init: 10 A()

3 A(r), A(l) -> A(r!1),A(l!1) @ 1

The command line:

$ KaDE poly.ka

will not terminate, wheareas the following one:

$ KaDe poly.ka �truncate 10

will.
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k1 k2 k3

Figure 7.10: Sites are equivalent, if the corrected rates of the third rule is twice the corrected
rate of each other rule.

Equivalent sites

In BNGL, the interface of a given agent may include several occurrence of a given site
name. These sites have exactly the same capabilities of interaction. This feature provides
a convenient syntactic construction to describe models even more compactly, at the cost
of having to deal with more complex structures (detecting embeddings between such site-
graphs may be very di�cult).

In Kappa, the interface of every agent is made of pair-wisely distinct site names. Yet it
may happen that some sites have exactly the same capabilities of interaction. KaDE can
infer this property and use it to derive a more compact system of di�erential equations
[3, 4, 16].

Consider the following model:

1 /%agent: A(x,y)

2 %init: 10 A()

3

4 A(x,y),A(x,y) -> A(x!1,y),A(x!1,y) @1

5 A(x,y),A(x,y) -> A(x,y!1),A(x,y!1) @1

6 A(x,y),A(x,y) -> A(x!1,y),A(x,y!1) @2

The rules are depicted in Fig. 7.10. We notice that each rule may be obtained from one
another by swapping the sites in agents. So we say that sites are equivalent in this set of rules.
Equivalent sites may be used to induce forward and backward bisimulations [2, 17, 3, 4, 16]
over the stochastic and the di�erential semantics of Kappa.

Let us consider two site names x and y in the signature of an agent type A. A set of rules is
symmetric with respect to x and y, if for every two rules that may be obtained one from the
other one by permuting the sites x and y in some agents of type A, their corrected rates is
inversely proportional to their number of automorphisms. In our example, the set of rules
is symmetric with respect to x and y only with the convention in which constant rates
are kept as they are given, without any corrective factor. A valuation from bio-molecular
species to real numbers is symmetric with respect to x and y, if for every two bio-molecular
species that can be obtained one from the other one by permuting the sites x and y in some
agents of type A, the image of the two bio-molecular species by the valuation is inversely
proportional to their number of automorphisms. Lastly an expression over bio-molecular
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species is symmetric with respect to x and y, if and only if it takes the same values for
every two symmetric valuations.

If the set of rules and the initial state of the model are symmetric with respect to two sites,
ignoring the di�erence among these two sites in bio-molecular species induces a backward
bisimulation (that is to say, the state of the system remains symmetric at every time [1]).
If the set of rules and every algebraic expression that occurs in rates or stoichiometric
coe�cients are symmetric, then ignoring the di�erence between these two sites in bio-
molecular species induces a forward bisimulation (we can de�ne the ODEs directly over the
equivalence-classes of bio-molecular species [1]).

The following option is available:

� The command line option --with-symmetries [ None | Backward | Forward ] sets
which kind of bisimulation is used to reduce the system of ordinary di�erential equa-
tions.

7.3.3 The sub-tab Model reduction

The sub-tab Model reduction gives access to more information about potential model
reduction.

Figure 7.11: KaDE graphical interface - sub-tab Model reduction.

The following options are available:
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� The option --show-symmetries itemizes the sites that are equivalent with respect to
the rules of the models, with respect to the rules of the model and the initial state
(backward bisimulation), and with respect to the rules of the models and the algebraic
expressions (forward bisimulation).

� The command line option --with-symmetries [ None | Backward | Forward ] sets
which kind of bisimulation is used to reduce the system of ordinary di�erential equa-
tions.

The sub-tab Static analysis (Expert)

Figure 7.12: KaDE graphical interface - sub-tab Static analysis.

The inference of equivalent sites is more precise when dead rules are discarded. Dead rules
can be computed thanks to KaSa. The sub-tab Static analysis allows the end-user to
switch on/switch o� abstract domains in order to tune the trade-o� between accuracy and
e�ciency of static analysis.

The following options are available:

� The option --(no-)views-domain can be used to switch on/o� the views domains.

� The option --(no-)double-bonds-domain can be used to switch on/o� the analysis
of potential double bonds between proteins.
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� The option --(no-)site-across-bonds-domain can be used to switch on/o� the
analysis of the relations among the states of the sites in connected proteins.

7.4 Tutorial

Now we explain further how to use KaDE to deal with the example of Sect. 7.3.2. The model
is described in the following Kappa �le:

1 ///sym.ka

2

3 %agent: A(x y)

4

5 %init: 100 A()

6

7 %var: 'k' 1

8 %obs: 'asym' |A(x[1]),A(y[1])|

9

10 A(x[.] y[.]),A(x[.] y[.]) -> A(x[1] y[.]),A(x[1] y[.]) @'k'

11 A(x[.] y[.]),A(x[.] y[.]) -> A(x[1] y[.]),A(x[.] y[1]) @'k'

12 A(x[.] y[.]),A(x[.] y[.]) -> A(x[.] y[1]),A(x[.] y[1]) @'k'

13

14 //We use the third convention (consider only the automorphisms

in the lhs

15 //that are preserved in the rhs). There are two of them in the

first and

16 //in the third rule. Only one in the second one. Hence the rate

of the first

17 //and third are divided by 2.

The rules of this models are depicted as follows:

k1

k2

k3

We denote as γ1, γ2, and γ3 the corrected rate constants of these rules. With the third con-
vention, which roughly speaking consists in dividing rates per the number of automorphisms
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in the left hand side of rules, that are preserved in the right hand side, we have:

� γ1 =
k1
2
;

� γ2 =
k2
2
;

� γ3 = k3.

Indeed, in the third rule, the mechanism makes a di�erence among the two agents. The non
trivial automorphism in the left hand side is not preserved in the right hand side.

Rules 1 and 2 have two automorphisms, whereas rule 3 has only one. As a consequence, the

rules are symmetric with respect to both sites if and only 2 · k1
2

= 2 · k2
2

= k3, that is to

say k1 = k2 = k3.

We use the following command line to generate the ODE semantics in Octave:

$ KaDe �rate-convention Biochemist sym.ka

By default, equivalent sites are not analysed and the Octave backend is used.

The result is dumped in the �le 'ode.m', which is editable. Moreover, each instruction is
annotated with some information referring to the Kappa �le. Variables are annotated by the
corresponding name in the Kappa �le. Initial species are annotated by Kappa expressions
describing the corresponding bio-molecular species.

Integration parameters are de�ned as follows:

$ grep -n -m 1 'tinit=' ode.m �after-context 8

19: tinit =0;

20-tend =1;

21- initialstep =1e-05;

22-maxstep =0.02;

23-reltol =0.001;

24-abstol =0.001;

25-period =0.01;

26- nonnegative=false;

27-

The variable nodevar gives the number of variables:

$ grep -n -m 1 'nodevar=' ode.m

29: nodevar =5;
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The function ode_init de�nes the list of variables and their initial concentration:

$ grep -n -m 1 'function Init' ode.m �after-context 11

176: function Init=ode_init ()

177-

178- global nodevar

179- global init

180-Init=zeros(nodevar ,1);

181-

182-Init (1) = init (1); % A(x[.] y[.])

183-Init (2) = init (2); % A(x[1] y[.]), A(x[1] y[.])

184-Init (3) = init (3); % A(x[1] y[.]), A(x[.] y[1])

185-Init (4) = init (4); % A(x[.] y[1]), A(x[.] y[1])

186-Init (5) = init (5); % t

187-end

We notice that four variables encode the concentration of bio-molecular species and a special
one accounts for time advance.

The function dydt de�nes the di�erential equations:

$ grep -n -m 1 'function dydt' ode.m �after-context 38

190: function dydt=ode_aux(t,y)

191-

192- global nodevar

193- global max_stoc_coef

194- global var

195- global k

196- global kd

197- global kun

198- global kdun

199- global stoc

200-

201-var(2)=y(3); % asym

202-

203-

204-dydt=zeros(nodevar ,1);

205-

206-% rule : A(x[.] y[.]), A(x[.] y[.]) -> A(x[.] y[1]), A(x

[.] y[1])

207-% reaction: A(x[.] y[.]) + A(x[.] y[.]) -> A(x[.] y[1]), A(

x[.] y[1])
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208-

209-dydt (1)=dydt (1) -1/2*k(3)*y(1)*y(1);

210-dydt (1)=dydt (1) -1/2*k(3)*y(1)*y(1);

211-dydt (4)=dydt (4) +2/2*k(3)*y(1)*y(1);

212-

213-% rule : A(x[.] y[.]), A(x[.] y[.]) -> A(x[1] y[.]), A(x

[.] y[1])

214-% reaction: A(x[.] y[.]) + A(x[.] y[.]) -> A(x[1] y[.]), A(

x[.] y[1])

215-

216-dydt (1)=dydt (1) -1/2*k(2)*y(1)*y(1);

217-dydt (1)=dydt (1) -1/2*k(2)*y(1)*y(1);

218-dydt (3)=dydt (3) +1/2*k(2)*y(1)*y(1);

219-

220-% rule : A(x[.] y[.]), A(x[.] y[.]) -> A(x[1] y[.]), A(x

[1] y[.])

221-% reaction: A(x[.] y[.]) + A(x[.] y[.]) -> A(x[1] y[.]), A(

x[1] y[.])

222-

223-dydt (1)=dydt (1) -1/2*k(1)*y(1)*y(1);

224-dydt (1)=dydt (1) -1/2*k(1)*y(1)*y(1);

225-dydt (2)=dydt (2) +2/2*k(1)*y(1)*y(1);

226-dydt (5)=1;

227-

228-end

The function obs de�nes the observables:

$ grep -n -m 1 'function obs' ode.m �after-context 12

288: function obs=ode_obs(y)

289-

290- global nobs

291- global var

292-obs=zeros(nobs ,1);

293-

294-t = y(5);

295-var(2)=y(3); % asym

296-

297-obs(1)=t; % [T]

298-obs(2)=var(2); % asym

299-
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300-end

The function jac provides the Jacobian (we omit it).

We now wonder whether the sites are equivalent or not. We use the following command
line:

$ KaDE �rate-convention Biochemist sym.ka �show-symmetries

The status of equivalent sites is described in the log:

Symmetries:

In rules:

************

Agent: A

-Equivalence classes of sites for bindings states:

{x,y}

-Equivalence classes of sites (both):

{x,y}

************

In rules and initial states:

************

Agent: A

-Equivalence classes of sites for bindings states:

{x,y}

-Equivalence classes of sites (both):

{x,y}

The set of rules and the initial state are symmetric with respect to the pair of sites. This is
not the case of the observable. Thus, only backward bisimulation may be used to reduce the
system. Indeed, if we ignore the di�erence between sites x and y, we can no longer express the
concentration of asymmetric dimers. This excludes forward bisimulation. Backward bisim-
ulations may still be used since the concentration of each species can be computed by from
the overall concentration of its equivalence class, since the concentration of two equivalent
species are always inversely proportional to their number of automorphisms.

The command line:

$ KaDe �rate-convention Biochemist sym.ka �with-symmetries Forward �output

ode_with_fwd_sym �output-plot data_fwd.csv

gives the same model, without any reduction.

The command line:
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$ KaDe �rate-convention Biochemist sym.ka �with-symmetries Backward �output

ode_with_bwd_sym �output-plot data_bwd.csv

reduces the system by ignoring the di�erence between sites x and y. This is done by replacing
in each reaction product, every species by an arbitrary representative of its equivalence
class, and in each algebraic expression, each species concentration by the product of its the
concentration of its representative times the relative weight of this species in its equivalence
class (which is constant and inversely proportional to its number of automorphisms.)

We notice that there are only 3 variables remaining:

$ grep -n -m 1 '%% variables' ode_with_bwd_sym.m

29: nodevar =3;

$ grep -n -m 1 'function Init' ode_with_bwd_sym.m �after-context 9

176: function Init=ode_init ()

177-

178- global nodevar

179- global init

180-Init=zeros(nodevar ,1);

181-

182-Init (1) = init (1); % A(x[.] y[.])

183-Init (2) = init (2); % A(x[.] y[1]), A(x[.] y[1])

184-Init (3) = init (3); % t

185-end

186-

187-

one for time advance, one for free As, and one for dimers (no matter which sites are bound).
KaDE has gathered the three kinds of dimers into a single equivalence class (no matter with
sites are bound). For instance, in the following:

$ grep �after-context 6 -n -m 1 'rule : A(x,y), A(x,y) -> A(x!1,y), A(x,y!1)'

ode_with_bwd_sym.m

the production of an asymmetric dimer, is replaced with the production of a dimer in which
the bond is on both sites y.

Now we explain how the values of the obervavles are computed. The code for the function
obs is the following one:

$ grep -n -m 1 'function obs' ode_with_bwd_sym.m �after-context 12
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286: function obs=ode_obs(y)

287-

288- global nobs

289- global var

290-obs=zeros(nobs ,1);

291-

292-t = y(3);

293-var(2)=y(2)/4; % asym

294-

295-obs(1)=t; % [T]

296-obs(2)=var(2); % asym

297-

298-end

We are interested in asymmetric dimers only. We notice that their concentration is obtained
by dividing the overall quantity of dimers by 4. To understand why, we shall have a closer
look at the meaning of each variable. As indicated here:

$ grep -n -m 1 '%% variables' ode_with_bwd_sym.m

15:%% variables (init(i),y(i)) denote numbers of embeddings

the convention is to count in number of embeddings. Thus the total number of dimers is
y(2)
2 . Then half of them only is an asymmetric dimer, which gives y(2)

4 .

Let us check the soundness of our tools, by integrating our three ODEs systems.

Firsly we de�ne the �le plot.gplot as follows:

set xlabel 'Asymmetric dimer concentration '

set ylabel 'CPU time (s.)'

set datafile separator ','

set title 'Initial model'

set term png

set output 'plot.png'

set xrange [0:1]

set yrange [0.0:40.]

set output 'plot.png'

plot 'data.csv' using 1:2 w l

the �le plot_fwd.gplot as follows:

set xlabel 'Asymmetric dimer concentration '

set ylabel 'CPU time (s.)'
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set datafile separator ','

set title 'reduced model (fwd)'

set term png

set output 'plot_fwd.png'

set xrange [0:1]

set yrange [0.0:40.]

set output 'plot_fwd.png'

plot 'data_fwd.csv' using 1:2 w l

and the �le plot_bwd.gplot as follows:

set xlabel 'Asymmetric dimer concentration '

set ylabel 'CPU time (s.)'

set datafile separator ','

set term png

set title 'Reduced model (bwd)'

set output 'plot_bwd.png'

set xrange [0:1]

set yrange [0.0:40.]

set output 'plot_bwd.png'

plot 'data.csv' using 1:2 w l

Then we can integrate our three di�erential systems and plot their respective solutions
thanks to the following command lines:

$ octave ode.m

$ octave ode_with_fwd_sym.m

$ octave ode_with_bwd_sym.m

$ gnuplot plot.gplot

$ gnuplot plot_fwd.gplot

$ gnuplot plot_bwd.gplot

We obtain the following plots:
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Figure 7.13: Initial model (without reduction).

Figure 7.14: Reduced model (fwd bisimulation).

Figure 7.15: Reduced model (bwd bisimulation).
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Chapter 8

Frequently asked questions

Simulation hangs after a while

If the progress bar seems stalled, it does not necessarily mean that the simulation is blocked.
In particular when a simulation is triggered with a time limit (-l option of the command
line) it might only indicate that the bio clock is stalled while computation events still occur.
Recall that the average (bio) time one has to wait in order to apply a rule is 1/A, where A
is the sum of all the rule activities (which is equal to the number of instances that a rule
has, times its kinetic rate). Whenever the number of occurrences of a rule grows too fast (if
new agents are created during the simulation for instance), or if the kinetic rate of a rule is
de�ned by a function that grows rapidly, the average time increment might tend to 0 and
if it remains so for a while, it will block the progress bar whose advance is proportional to
the bio time [T].

In order to make sure that KaSim is not incorrectly blocked you may wish to plot the event
clock against time clock using the observable %obs: 'events' [E] or run the simulation
using an event limit (-e option of the command line) instead of a time limit.

What do null events mean, why do I have any?

Using null events is a way for KaSim to compensate for some over approximation it is
doing, in order to deal with large simulations more e�ciently. They usually do not impact
signi�cantly the performances of the simulator, unless the model contains rules using the
special notation to deal with ambiguous molecularity (see Section 2.5.4). With pure Kappa
rules, the ratio r of null event over productive ones (that you can track using the observable
%obs: 'r' [E-]/[E]) should tend to 0 when models have a lot of agents.
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No data points are generated

Make sure you have %obs or %plot instructions in your KF. Also make sure to use a
reasonable value for the -p option in the command line to tell KaSim how often you wish
to have points on your curves.

Too many instances of an observable

The value of a Kappa expression E is equal to the number of embeddings it has in the
current mixture M . Embeddings are maps from agents in E to agents in M . If E has
symmetries then every permutation of E will be counted as a new embedding. For instance
let E =A(x[1]),A(x[1]) and let M =A(x[1],y{p}[.]),A(x[1],y{u}[.]). KaSim will
count two instances of E in M : the one mapping the �rst A of E to the �rst A of M and
the one mapping the �rst A of E to the second A of M .

Value nan in the data �le at the end of the simulation

The value nan means "Not a Number". It is generated when a plotted variable is in�nite.
Make sure this variable is not divided by zero at some point.
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